数据结构:数据元素的集合 + 数据元素之间的关系
二叉树:
1、特点:
链式存储
2、4种遍历:
先序遍历
中序遍历
后序遍历
层次遍历
from collections import deque
class BiTreeNode:
"""二叉树"""
def __init__(self, data):
"""节点"""
self.data = data
self.lchild = None
self.rchild = None
def pre_order(root):
"""前序遍历"""
if root:
print(root.data, end=',')
pre_order(root.lchild)
pre_order(root.rchild)
def in_order(root):
"""中序遍历"""
if root:
in_order(root.lchild)
print(root.data, end=',')
in_order(root.rchild)
def post_order(root):
"""后序遍历"""
if root:
post_order(root.lchild)
post_order(root.rchild)
print(root.data, end=',')
def level_order(root):
queue = deque
queue.append(root)
# 只要队不空,先出队一个元素,然后把它的左右孩子进队
while len(queue) > 0:
node = queue.popleft()
print(node.data, end=',')
if node.lchild:
queue.append(node.lchild)
if node.rchild:
queue.append(node.rchild)
a = BiTreeNode("A")
b = BiTreeNode("B")
c = BiTreeNode("C")
d = BiTreeNode("D")
e = BiTreeNode("E")
f = BiTreeNode("F")
g = BiTreeNode("G")
e.lchild = a
e.rchild = g
a.rchild = c
c.lchild = b
c.rchild = d
g.rchild = f
root = e
pre_order(root)
print('')
in_order(root)
print('')
post_order(root)
print('')
level_order(root)
二叉搜索树
1.特点:
左子树小于根节点,右子树大于根节点
2、时间复杂度:O(lgn)
最坏情况下,二叉搜索树2肯非常偏斜,O(n)
解决方法:
随机化插入
AVL树
3、4种遍历:
先序遍历
中序遍历
后序遍历
层次遍历
import random
class BiTreeNode:
def __init__(self, data):
"""节点"""
self.data = data
self.lchild = None
self.rchild = None
self.parent = None
class BST:
"""二叉搜索树"""
def __init__(self,li=None):
self.root = None
if li:
for val in li:
self.insert_no_rec(val)
def insert(self, node, val):
"""递归法插入"""
if not node: #如果该结点为空,则直接插入
node = BiTreeNode(val)
elif val < node.data:
node.lchild = self.insert(node.lchild, val)
node.lchild.parent = node
elif val > node.data:
node.rchild = self.insert(node.rchild, val)
node.rchild.parent = node
return node
def insert_no_rec(self, val):
"""非递归法插入"""
p = self.root
if not p:
self.root = BiTreeNode(val)
return
while True:
if val < p.data:
if p.lchild:
p = p.lchild
else:
p.lchild = BiTreeNode(val)
p.lchild.parent = p
return
elif val > p.data:
if p.rchild:
p = p.rchild
else:
p.rchild = BiTreeNode(val)
p.rchild.parent = p
return
else:
return
def pre_order(self,root):
"""前序遍历"""
if root:
print(root.data, end=',')
self.pre_order(root.lchild)
self.pre_order(root.rchild)
def in_order(self,root):
"""中序遍历,一定是升序的"""
if root:
self.in_order(root.lchild)
print(root.data, end=',')
self.in_order(root.rchild)
def post_order(self,root):
"""后序遍历"""
if root:
self.post_order(root.lchild)
self.post_order(root.rchild)
print(root.data, end=',')
def query(self, node, val):
"""递归法查询"""
if not node:
return None
elif node.data < val: # 往右找
return self.query(node.rchild, val)
elif node.data > val: # 往左找
return self.query(node.lchild, val)
else:
return node
def query_no_rec(self, val):
"""非递归法查询"""
p = self.root
# 根节点存在时
while p:
if p.data < val:
p = p.rchild
elif p.data > val:
p = p.lchild
else:
return p
return False # 根节点不存在则返回Flase
def __remove_node_1(self, node):
"""情况1:node是叶子节点,则直接删掉"""
if not node.parent:
self.root = None
if node == node.parent.lchild: # node为它父亲的左孩子
self.parent.lchild = None
else: # node为它父亲的右孩子
self.parent.rchild = None
def __remove_node_21(self, node):
"""情况2.1:node只有一个左孩子"""
if not node.parent:
self.root = node.lchild
node.lchild.parent = None
elif node == node.parent.lchild: # node为它父亲的左孩子
node.parent.lchild = node.lchild
node.lchild.parent = node.parent
else: # node为它父亲的右孩子
node.parent.rchild = node.lchild
node.lchild.parent = node.parent
def __remove_node_22(self, node):
"""情况2.2:node只有一个右孩子"""
if not node.parent:
self.root = node.rchild
node.rchild.parent = None
elif node == node.parent.lchild: # node为它父亲的左孩子
node.parent.lchild = node.rchild
node.rchild.parent = node.parent
else: # node为它父亲的右孩子
node.parent.rchild = node.rchild
node.rchild.parent = node.parent
def delete(self, val):
if self.root: # 不是空树
node = self.query_no_rec(val)
if node: # 如果不存在,则报错
return False
if not node.lchild and not node.rchild: # 情况1:node是叶子节点,则直接删掉
self.__remove_node_1(node)
elif not node.rchild: # 情况2.1:node只有一个左孩子
self.__remove_node_21(node)
elif not node.lchild: # 情况2.2:node只有一个右孩子
self.__remove_node_22(node)
else: # 情况3:node的左右孩子都有
# 先找到node的右子树上的最小结点min_node
min_node = node.rchild
while min_node.lchild:
min_node = min_node.lchild
# node的右子树上的最小结点min_node,将它替换掉node
node.data = min_node.data
# 删除min_node结点(肯定没有左孩子)时,需要判断它是否有右孩子
if min_node.rchild:
self.__remove_node_22(min_node)
else:
self.__remove_node_1(min_node)
li = list(range(0, 10))
random.shuffle(li)
tree = BST(li)
tree.pre_order(tree.root)
print("")
tree.in_order(tree.root)
print("")
tree.post_order(tree.root)
"""
1,0,6,3,2,4,5,8,7,9,
0,1,2,3,4,5,6,7,8,9,
0,2,5,4,3,7,9,8,6,1,
"""