spfa()算法

给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。

数据保证不存在负权回路。

输入格式
第一行包含整数n和m。

接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。

输出格式
输出一个整数,表示1号点到n号点的最短距离。

如果路径不存在,则输出”impossible”。

数据范围
1≤n,m≤105,
图中涉及边长绝对值均不超过10000。

输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2
AC代码:

#include<iostream>
#include<algorithm>
#include<string.h>
#include<queue>
using namespace std;
const   int N=200010;
int h[N],e[N],ne[N],idx;
int w[N];
bool st[N];
int d[N];
void add(int a,int b,int c)
{
    e[idx]=b;
    w[idx]=c;
    ne[idx]=h[a];
    h[a]=idx++;
    
}
int m,n,k;
int spfa()
{
    queue<int>q;
    memset(d,0x3f,sizeof(d));
    d[1]=0;
    st[1]=1;
    q.push(1);
    while(q.size())
    {
        int t=q.front();
        q.pop();
        st[t]=0;
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(d[j]>d[t]+w[i])
            {
                d[j]=d[t]+w[i];
                if(!st[j])
                {
                    st[j]=1;
                    q.push(j);
                }
            }
        }
    }
    if(d[n]>0x3f3f3f3f/2)   return 0;
    else    return d[n];
}
int main()
{
    memset(h,-1,sizeof(h));
    cin>>n>>m;
    while(m--)
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }
    if(spfa()){
        printf("%d\n",spfa());
    }
    else
        {
            printf("impossible\n");
        }
        return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值