最短路径(四)Floyd算法(多源汇最短路)

该博客介绍了如何使用Floyd算法求解可能存在重边和自环的有向图中的最短路径。在可能存在负权重的情况下,通过避免负权回路确保找到最短距离。代码示例展示了如何处理输入数据并输出询问结果,对于不存在路径的情况返回'Impossible'。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AcWing 854. Floyd求最短路

给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输出“impossible”。
数据保证图中不存在负权回路。

输入格式
第一行包含三个整数n,m,k
接下来m行,每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。
接下来k行,每行包含两个整数x,y,表示询问点x到点y的最短距离。

输出格式
共k行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出“impossible”。

数据范围
1≤n≤200,
1≤k≤n2
1≤m≤20000,
图中涉及边长绝对值均不超过10000。

输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1

Code:

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 210, INF = 1e6;
int n, m, Q;
int d[N][N];//d数组存放i到j的最短路

void floyd()
{
    for(int k = 1; k <= n; k ++)
        for(int i = 1; i <= n; i ++)
            for(int j = 1; j <= n; j ++)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

int main()
{
    cin >> n >> m >> Q;
    for(int i = 1; i <= n; i ++)
        for(int j = 1; j <= n; j ++)
            if(i == j)  d[i][j] = 0;
            else d[i][j] = INF;
            
    while(m --)
    {
        int a, b, c;
        cin >> a >> b >> c;
        d[a][b] = min(d[a][b], c);
    }
    
    floyd();
    
    while(Q --)
    {
        int a, b;
        cin >> a >> b;
        
        if(d[a][b] > INF / 2)  puts("impossible");
        else cout << d[a][b] << endl;
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值