1237. 找出给定方程的正整数解

1237. 找出给定方程的正整数解

在这里插入图片描述
在这里插入图片描述代码:

class Solution {
    public List<List<Integer>> findSolution(CustomFunction customfunction, int z) {
        List<List<Integer>> list = new ArrayList<>();
        for (int i = 1; i <= 1000; i++)
        {
            if (customfunction.f(i, 1) > z) break;
            for (int j = 1; j <= 1000; j++)
            {
                if (customfunction.f(i, j) == z) {
                    List<Integer> nums = new ArrayList<Integer>();
                    nums.add(i);
                    nums.add(j);
                    list.add(nums);
                }
                else if (customfunction.f(i, j) > z) break;
            }
        }
        return list;
    }
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 题目描述: 给定若干个正整数a0、a1、...、an-1,从中选出若干个数,使它们的和恰好为k,要求找出选择元素个数最少的题思路: 这是一道典型的背包问题,可以使用动态规划来决。 定义状态:dp[i][j]表示前i个数中选出若干个数,使它们的和恰好为j时,选择元素个数的最小值。 状态转移方程:dp[i][j] = min(dp[i-1][j], dp[i-1][j-ai]+1),其中ai表示第i个数的值。 初始状态:dp[0][0] = 0,dp[0][j] = INF,dp[i][0] = 0。 最终答案:dp[n][k],其中n为给定正整数的个数,k为目标和。 代码实现: ### 回答2: 这是一个典型的0/1背包问题,可以用动态规划的思想求。 首先定义状态:dp[i][j]表示考虑前i个数,是否能够选出若干个数,使它们的和恰好为j。 转移方程:dp[i][j] = dp[i-1][j] || dp[i-1][j-a[i]] (其中a[i]表示第i个数的值) 释:dp[i][j]可以由两种选择得到,一种是不选第i个数,那么dp[i][j]就等于dp[i-1][j];另一种是选第i个数,那么dp[i][j]就等于dp[i-1][j-a[i]]。 边界条件:当j=0时,dp[i][j]=1,表示任何时候都可以选出0个数使它们的和恰好为0;当i=0时,dp[i][j]=0,表示没有任何数可以选。 最终的答案为:选出元素个数最少的,可以从dp[n][k],dp[n-1][k],dp[n-2][k],...,dp[0][k]中选出dp[i][k]=1的最小的i。 时间复杂度为O(nk),空间复杂度为O(nk)。可以通过优化空间复杂度,将空间复杂度优化为O(k)。具体做法是:将二维数组dp[i][j]转化为一维数组dp[j],逆序遍历a数组,然后正序遍历背包容量,将dp[j-a[i]]的值更新到dp[j]中。这样,每次更新dp数组时,只用到了上一次循环的结果,空间复杂度得到了优化。 ### 回答3: 这是一个典型的背包问题,可以用动态规划的思想来决。 设 $dp[i][j]$ 表示在前 $i$ 个正整数中选数,使它们的和恰好为 $j$ 的最小个数。则有以下状态转移方程: 当 $j<a_i$ 时,我们不能选择 $a_i$。此时 $dp[i][j]=dp[i-1][j]$。 当 $j \geq a_i$ 时,我们有两种选择: - 选 $a_i$ :此时 $dp[i][j]=dp[i-1][j-a_i]+1$。 - 不选 $a_i$ :此时 $dp[i][j]=dp[i-1][j]$。 综上所述,状态转移方程为: $$dp[i][j]=\begin{cases} 0 & j=0 \\ dp[i-1][j] & j<a_i \\ \min\{dp[i-1][j],dp[i-1][j-a_i]+1\} & j\geq a_i \end{cases} $$ 最终要求的是选出元素个数最少的,因此只需要从 $dp[n][k],dp[n][k-1],\dots,dp[n][0]$ 中找到第一个不为 $\infty$ 的值即可。 时间复杂度为 $O(nk)$,可以通过。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值