差分隐私详细介绍

本文详细介绍了差分隐私的概念,包括ε-差分隐私的定义、敏感度的作用、拉普拉斯机制的实现以及(ε,δ)-差分隐私的扩展。重点讲解了数据集邻近性的两种定义和敏感度在保护隐私中的关键角色。通过实例说明了差分隐私如何在数据发布中平衡隐私和信息利用。
摘要由CSDN通过智能技术生成

差分隐私的详细解释

差分隐私的数学表述

差分隐私通过在数据发布或查询结果中引入一定量的噪声,以减少或避免对个体数据的泄露,从而保护个人隐私。它提供了一种在数据使用和隐私保护之间找到平衡的方法。

ε-差分隐私 (ε-DP)

给定一个随机算法 A A A,如果对于任何两个邻近的数据集 D 1 D_1 D1 D 2 D_2 D2,以及算法 A A A 可能产生的所有输出集合 S S S,都满足以下不等式,则算法 A A A 满足 ε-差分隐私:

Pr ⁡ [ A ( D 1 ) ∈ S ] ≤ e ε ⋅ Pr ⁡ [ A ( D 2 ) ∈ S ] \Pr[A(D_1) \in S] \leq e^\varepsilon \cdot \Pr[A(D_2) \in S] Pr[A(D1)S]eεPr[A(D2)S]

这里的 ε \varepsilon ε(epsilon)是一个非负参数,量化隐私保证的强度。较小的 ε \varepsilon ε 值意味着更强的隐私保护。

敏感度

查询函数 f f f 的敏感度(通常表示为 Δ f \Delta f Δf)衡量了当数据集中一个元素发生变化时,查询结果最大可能的变化量。它是差分隐私中噪声添加量的重要参数。数学定义如下:

Δ f = max ⁡ D 1 , D 2 ∥ f ( D 1 ) − f ( D 2 ) ∥ 1 \Delta f = \max_{D_1,D_2} \|f(D_1) - f(D_2)\|_1 Δf=D1,D2maxf(D1)f(D2)1

其中 D 1 D_1 D1 D 2 D_2 D2 是邻近数据集。

拉普拉斯机制

拉普拉斯机制是实现差分隐私的一种常见方法,它通过在查询结果中添加以 Δ f / ε \Delta f / \varepsilon Δf/ε 为标准差的拉普拉斯分布噪声来保护隐私。噪声的量由查询的敏感度和隐私预算 ε \varepsilon ε 决定。拉普拉斯噪声 Z Z Z 的概率密度函数定义为:

P ( Z = z ) = 1 2 b e − ∣ z ∣ b P(Z=z) = \frac{1}{2b} e^{-\frac{|z|}{b}} P(Z=z)=2b1ebz

其中 b b b 是拉普拉斯分布的尺度参数,等于 Δ f ε \frac{\Delta f}{\varepsilon} εΔf

(ε, δ)-差分隐私 ((ε, δ)-DP)

(ε, δ)-差分隐私是对 ε-DP 的一种放宽,它允许算法在小概率情况下不满足 ε-DP 条件。具体来说,如果算法对所有邻近数据集 D 1 D_1 D1 D 2 D_2 D2,以及所有输出子集 S S S,都满足以下条件,则算法满足 (ε, δ)-DP:

Pr ⁡ [ A ( D 1 ) ∈ S ] ≤ e ε ⋅ Pr ⁡ [ A ( D 2 ) ∈ S ] + δ \Pr[A(D_1) \in S] \leq e^\varepsilon \cdot \Pr[A(D_2) \in S] + \delta Pr[A(D1)S]eεPr[A(D2)S]+δ

其中 δ \delta δ 是一个小于 1 的正数,代表算法违反 ε-DP 条件的概率上限。

数据集的邻近性如何表达

在差分隐私中,数据集的邻近性定义了两个数据集之间的“相似度”。通常有两种方式定义邻近数据集:

1. 无界差分隐私(Unbounded Differential Privacy)

两个数据集被认为是邻近的,如果它们之间只相差一个元素。这意味着一个数据集可以通过添加或移除一个元素转变为另一个数据集。这种定义不限制数据集的大小,允许它们有不同的元素数量。

2. 有界差分隐私(Bounded Differential Privacy)

两个数据集被认为是邻近的,如果它们具有相同数量的元素,并且可以通过更改其中一个数据集中的一个元素来匹配另一个数据集。这种定义要求数据集具有相同的大小,并关注数据元素的替换而非添加或移除。

如何理解敏感度

敏感度在确定如何实现差分隐私时起着关键作用,因为它影响了需要添加到查询结果中的噪声量。一个查询的敏感度越高,意味着单个记录的改变可能引起更大的结果变化,因此需要添加更多的噪声来遮盖这种变化,以保护个体的隐私。理解敏感度有助于我们选择适当的噪声类型和量,以实现既定的隐私保护水平。

为什么这样做能保护数据隐私

差分隐私的核心思想是通过在发布的数据中引入噪声来防止对任何个体信息的精确推断。即使攻击者拥有除一个个体外的所有数据,由于噪声的存在,他们仍然无法确定该个体是否在数据集中,或者无法精确地推断出该个体的信息。这种方法提供了强有力的数学保证,使得个体信息的泄露风险大大降低。

例子

考虑一个医疗研究场景,研究者希望公布某种疾病的平均治疗费用。直接公布原始数据可能会暴露个体病患的费用信息。通过应用差分隐私,研究者可以在公布的平均费用中加入适量的噪声。这样,即使有人尝试通过公布的数据推断个别病患的费用,由于噪声的存在,推断的准确性将大大降低,个体病患的费用信息得到保护,而公众和研究者仍能从数据中获得有价值的统计信息。

  • 28
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值