LightGBM

LightGBM

WHAT

LightGBM的介绍

LightGBM是2017年由微软推出的可扩展机器学习系统,是微软旗下DMKT的一个开源项目,由2014年首届阿里巴巴大数据竞赛获胜者之一柯国霖老师带领开发。它是一款基于GBDT(梯度提升决策树)算法的分布式梯度提升框架,为了满足缩短模型计算时间的需求,LightGBM的设计思路主要集中在减小数据对内存与计算性能的使用,以及减少多机器并行计算时的通讯代价。

LightGBM可以看作是XGBoost的升级豪华版,在获得与XGBoost近似精度的同时,又提供了更快的训练速度与更少的内存消耗。正如其名字中的Light所蕴含的那样,LightGBM在大规模数据集上跑起来更加优雅轻盈,一经推出便成为各种数据竞赛中刷榜夺冠的神兵利器。

LightGBM的主要优点:

简单易用。提供了主流的Python\C++\R语言接口,用户可以轻松使用LightGBM建模并获得相当不错的效果。
高效可扩展。在处理大规模数据集时高效迅速、高准确度,对内存等硬件资源要求不高。
鲁棒性强。相较于深度学习模型不需要精细调参便能取得近似的效果。
LightGBM直接支持缺失值与类别特征,无需对数据额外进行特殊处理

LightGBM的主要缺点:

相对于深度学习模型无法对时空位置建模,不能很好地捕获图像、语音、文本等高维数据。
在拥有海量训练数据,并能找到合适的深度学习模型时,深度学习的精度可以遥遥领先LightGBM。

LightGBM的应用

LightGBM在机器学习与数据挖掘领域有着极为广泛的应用。据统计LightGBM模型自2016到2019年在Kaggle平台上累积获得数据竞赛前三名三十余次,其中包括CIKM2017 AnalytiCup、IEEE Fraud Detection等知名竞赛。这些竞赛来源于各行各业的真实业务,这些竞赛成绩表明LightGBM具有很好的可扩展性,在各类不同问题上都可以取得非常好的效果。

同时,LightGBM还被成功应用在工业界与学术界的各种问题中。例如金融风控、购买行为识别、交通流量预测、环境声音分类、基因分类、生物成分分析等诸多领域。虽然领域相关的数据分析和特性工程在这些解决方案中也发挥了重要作用,但学习者与实践者对LightGBM的一致选择表明了这一软件包的影响力与重要性。

HOW

格式一

import lightgbm as lgb
seed=2019
model = lgb.LGBMClassifier(boosting_type= 'gbdt',
                           objective= 'binary',
                           num_leaves=256,
                           max_depth=-1,
                           learning_rate=0.01,
                           n_estimators=500,
                           random_state=seed,
                           metric='auc'
                           )
lgb_model = momodel el_1_1.fit(X_train, y_train_1)
test_predict=lgb_model .predict_proba(test)

格式二

import lightgbm as lgb
dtrain = lgb.Dataset(train, label=label['click'])
params = {
    'boosting_type': 'gbdt',
    'objective': 'binary',
    'metric': 'auc',
    'max_depth': -1,
    'num_leaves': 31,
    'learning_rate': 0.1,
    'verbose': 0,
    'random_state': 42,
    'n_jobs': -1,
}
lgb_model=lgb.train(params,dtrain,num_boost_round=10000,verbose_eval=50,)

使用样例


##  基础函数库
import numpy as np 
import pandas as pd
## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv('high_diamond_ranked_10min.csv')
y = df.blueWins
## 利用.info()查看数据的整体信息
df.info()
## 进行简单的数据查看,我们可以利用 .head() 头部.tail()尾部
df.head()
df.tail()
## 标注标签并利用value_counts函数查看训练集标签的数量
y = df.blueWins
y.value_counts()
## 标注特征列
drop_cols = ['gameId','blueWins']
x = df.drop(drop_cols, axis=1)
## 对于特征进行一些统计描述
a=x.describe()
## 根据上面的描述,我们可以去除一些重复变量,比如只要知道蓝队是否拿到一血,我们就知道红队有没有拿到,可以去除红队的相关冗余数据。
drop_cols = ['redFirstBlood','redKills','redDeaths'
             ,'redGoldDiff','redExperienceDiff', 'blueCSPerMin',
            'blueGoldPerMin','redCSPerMin','redGoldPerMin']
x.drop(drop_cols, axis=1, inplace=True)


data = x
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std.iloc[:, 0:9]], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')
fig, ax = plt.subplots(1,2,figsize=(15,5))
# 绘制小提琴图
sns.violinplot(x='Features', y='Values', hue='blueWins', data=data, split=True,
               inner='quart', ax=ax[0], palette='Blues')
fig.autofmt_xdate(rotation=45)
data = x
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std.iloc[:, 9:18]], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')
# 绘制小提琴图
sns.violinplot(x='Features', y='Values', hue='blueWins', 
               data=data, split=True, inner='quart', ax=ax[1], palette='Blues')
fig.autofmt_xdate(rotation=45)
plt.show()

plt.figure(figsize=(18,14))
sns.heatmap(round(x.corr(),2), cmap='Blues', annot=True)
plt.show()

# 去除冗余特征
drop_cols = ['redAvgLevel','blueAvgLevel']
x.drop(drop_cols, axis=1, inplace=True)
sns.set(style='whitegrid', palette='muted')
# 构造两个新特征
x['wardsPlacedDiff'] = x['blueWardsPlaced'] - x['redWardsPlaced']
x['wardsDestroyedDiff'] = x['blueWardsDestroyed'] - x['redWardsDestroyed']
data = x[['blueWardsPlaced','blueWardsDestroyed','wardsPlacedDiff','wardsDestroyedDiff']].sample(1000)
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')

plt.figure(figsize=(10,6))
sns.swarmplot(x='Features', y='Values', hue='blueWins', data=data)
plt.xticks(rotation=45)
plt.show()


## 去除和眼位相关的特征
drop_cols = ['blueWardsPlaced','blueWardsDestroyed','wardsPlacedDiff',
            'wardsDestroyedDiff','redWardsPlaced','redWardsDestroyed']
x.drop(drop_cols, axis=1, inplace=True)
x['killsDiff'] = x['blueKills'] - x['blueDeaths']
x['assistsDiff'] = x['blueAssists'] - x['redAssists']
x[['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists']].hist(figsize=(12,10), bins=20)
plt.show()

data = x[['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists']].sample(1000)
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')

plt.figure(figsize=(10,6))
sns.swarmplot(x='Features', y='Values', hue='blueWins', data=data)
plt.xticks(rotation=45)
plt.show()

data = pd.concat([y, x], axis=1).sample(500)
sns.pairplot(data, vars=['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists'], 
             hue='blueWins')
plt.show()


x['dragonsDiff'] = x['blueDragons'] - x['redDragons']
x['heraldsDiff'] = x['blueHeralds'] - x['redHeralds']
x['eliteDiff'] = x['blueEliteMonsters'] - x['redEliteMonsters']
data = pd.concat([y, x], axis=1)
eliteGroup = data.groupby(['eliteDiff'])['blueWins'].mean()
dragonGroup = data.groupby(['dragonsDiff'])['blueWins'].mean()
heraldGroup = data.groupby(['heraldsDiff'])['blueWins'].mean()
fig, ax = plt.subplots(1,3, figsize=(15,4))
eliteGroup.plot(kind='bar', ax=ax[0])
dragonGroup.plot(kind='bar', ax=ax[1])
heraldGroup.plot(kind='bar', ax=ax[2])
print(eliteGroup)
print(dragonGroup)
print(heraldGroup)
plt.show()


x['towerDiff'] = x['blueTowersDestroyed'] - x['redTowersDestroyed']
data = pd.concat([y, x], axis=1)
towerGroup = data.groupby(['towerDiff'])['blueWins']
print(towerGroup.count())
print(towerGroup.mean())
fig, ax = plt.subplots(1,2,figsize=(15,5))
towerGroup.mean().plot(kind='line', ax=ax[0])
ax[0].set_title('Proportion of Blue Wins')
ax[0].set_ylabel('Proportion')
towerGroup.count().plot(kind='line', ax=ax[1])
ax[1].set_title('Count of Towers Destroyed')
ax[1].set_ylabel('Count')


## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split
## 选择其类别为01的样本 (不包括类别为2的样本)
data_target_part = y
data_features_part = x
## 测试集大小为20%80%/20%分
x_train, x_test, y_train, y_test = train_test_split(data_features_part, data_target_part, test_size = 0.2, random_state = 2020)
## 导入LightGBM模型
from lightgbm.sklearn import LGBMClassifier
## 定义 LightGBM 模型 
clf = LGBMClassifier()
# 在训练集上训练LightGBM模型
clf.fit(x_train, y_train)

## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics
## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)
# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

sns.barplot(y=data_features_part.columns, x=clf.feature_importances_)

from sklearn.metrics import accuracy_score
from lightgbm import plot_importance

def estimate(model,data):

    #sns.barplot(data.columns,model.feature_importances_)
    ax1=plot_importance(model,importance_type="gain")
    ax1.set_title('gain')
    ax2=plot_importance(model, importance_type="split")
    ax2.set_title('split')
    plt.show()
def classes(data,label,test):
    model=LGBMClassifier()
    model.fit(data,label)
    ans=model.predict(test)
    estimate(model, data)
    return ans
 
ans=classes(x_train,y_train,x_test)
pre=accuracy_score(y_test, ans)
print('acc=',accuracy_score(y_test,ans))

## 从sklearn库中导入网格调参函数
from sklearn.model_selection import GridSearchCV

## 定义参数取值范围
learning_rate = [0.1, 0.3, 0.6]
feature_fraction = [0.5, 0.8, 1]
num_leaves = [16, 32, 64]
max_depth = [-1,3,5,8]

parameters = { 'learning_rate': learning_rate,
              'feature_fraction':feature_fraction,
              'num_leaves': num_leaves,
              'max_depth': max_depth}
model = LGBMClassifier(n_estimators = 50)

## 进行网格搜索
clf = GridSearchCV(model, parameters, cv=3, scoring='accuracy',verbose=3, n_jobs=-1)
clf = clf.fit(x_train, y_train)

## 网格搜索后的最好参数为

clf.best_params_

## 在训练集和测试集上分布利用最好的模型参数进行预测

## 定义带参数的 LightGBM模型 
clf = LGBMClassifier(feature_fraction = 0.8,
                    learning_rate = 0.1,
                    max_depth= 3,
                    num_leaves = 16)
# 在训练集上训练LightGBM模型
clf.fit(x_train, y_train)

train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

LightGBM的重要参数

基本参数调整

num_leaves参数 这是控制树模型复杂度的主要参数,一般的我们会使num_leaves小于(2的max_depth次方),以防止过拟合。由于LightGBM是leaf-wise建树与XGBoost的depth-wise建树方法不同,num_leaves比depth有更大的作用。
min_data_in_leaf 这是处理过拟合问题中一个非常重要的参数. 它的值取决于训练数据的样本个树和 num_leaves参数. 将其设置的较大可以避免生成一个过深的树, 但有可能导致欠拟合. 实际应用中, 对于大数据集, 设置其为几百或几千就足够了.
max_depth 树的深度,depth 的概念在 leaf-wise 树中并没有多大作用, 因为并不存在一个从 leaves 到 depth 的合理映射。

针对训练速度的参数调整

通过设置 bagging_fraction 和 bagging_freq 参数来使用 bagging 方法。
通过设置 feature_fraction 参数来使用特征的子抽样。
选择较小的 max_bin 参数。
使用 save_binary 在未来的学习过程对数据加载进行加速。

针对准确率的参数调整

使用较大的 max_bin (学习速度可能变慢)
使用较小的 learning_rate 和较大的 num_iterations
使用较大的 num_leaves (可能导致过拟合)
使用更大的训练数据
尝试 dart 模式

针对过拟合的参数调整

使用较小的 max_bin
使用较小的 num_leaves
使用 min_data_in_leaf 和 min_sum_hessian_in_leaf
通过设置 bagging_fraction 和 bagging_freq 来使用 bagging
通过设置 feature_fraction 来使用特征子抽样
使用更大的训练数据
使用 lambda_l1, lambda_l2 和 min_gain_to_split 来使用正则
尝试 max_depth 来避免生成过深的树

LightGBM原理粗略讲解

LightGBM底层实现了GBDT算法,并且添加了一系列的新特性:

基于直方图算法进行优化,使数据存储更加方便、运算更快、鲁棒性强、模型更加稳定等。
提出了带深度限制的 Leaf-wise 算法,抛弃了大多数GBDT工具使用的按层生长 (level-wise) 的决策树生长策略,而使用了带有深度限制的按叶子生长策略,可以降低误差,得到更好的精度。
提出了单边梯度采样算法,排除大部分小梯度的样本,仅用剩下的样本计算信息增益,它是一种在减少数据量和保证精度上平衡的算法。
提出了互斥特征捆绑算法,高维度的数据往往是稀疏的,这种稀疏性启发我们设计一种无损的方法来减少特征的维度。通常被捆绑的特征都是互斥的(即特征不会同时为非零值,像one-hot),这样两个特征捆绑起来就不会丢失信息。
LightGBM是基于CART树的集成模型,它的思想是串联多个决策树模型共同进行决策。

那么如何串联呢?LightGBM采用迭代预测误差的方法串联。举个通俗的例子,我们现在需要预测一辆车价值3000元。我们构建决策树1训练后预测为2600元,我们发现有400元的误差,那么决策树2的训练目标为400元,但决策树2的预测结果为350元,还存在50元的误差就交给第三棵树……以此类推,每一颗树用来估计之前所有树的误差,最后所有树预测结果的求和就是最终预测结果!

LightGBM的基模型是CART回归树,它有两个特点:(1)CART树,是一颗二叉树。(2)回归树,最后拟合结果是连续值。

链接: 天池LightGBM 讲解.

链接: 一文搞定 GBDT、Xgboost 和 LightGBM 的面试.

一、LightGBM介绍:

LightGBM (Light Gradient Boosting Machine:轻量梯度提升机器)
一个实现 GBDT 算法的框架,支持高效率的并行训练
性能更强劲,速度更快,微软提出。

二、LightGBM原理:

2.1优点:

更快的训练速度
更低的内存消耗
更好的准确率
分布式支持,可以快速处理海量数据
在这里插入图片描述

性能提升的原因:
①histogram算法替换了传统的Pre-Sorted,某种意义上是牺牲了精度(但是作者声明实验发现精度影响不大)换取速度,直方图作差构建叶子直方图挺有创造力的。(xgboost的分布式实现也是基于直方图的,利于并行)
②带有深度限制的按叶子生长 (leaf-wise) 算法代替了传统的(level-wise) 决策树生长策略,提升精度,同时避免过拟合危险。

2.2、LightGBM 优化

1基于 Histogram 的决策树算法
2带深度限制的 Leaf-wise 的叶子生长策略
3直方图做差加速
4直接支持类别特征(Categorical Feature)
5Cache 命中率优化
6基于直方图的稀疏特征优化
7多线程优化.

三、LightGBM使用

3.1参数

3.2代码

3.3小常识

3.3.1早停机制
如果在训练过程中启用了提前停止,可以用 bst.best_iteration从最佳迭代中获得预测结果:ypred = bst.predict(data,num_iteration = bst.best_iteration )

3.3.2自动处理类别特征
当使用本地分类特征,LightGBM能提供良好的精确度。不像简单的one-hot编码,lightGBM可以找到分类特征的最优分割。
用categorical_feature指定分类特征
首先需要转换为int类型,并且只支持非负数。转换为连续范围更好。
使用min_data_per_group,cat_smooth去处理过拟合(当#data比较小,或者#category比较大)
对于具有高基数的分类特征(#category比较大),最好转换为数字特征。

3.3.3自动处理缺失值
lightGBM通过默认方式处理缺失值,可以通过设置use_missing = false 来使其无效。
lightGBM通过默认的方式用NA(NaN)去表示缺失值,可以通过设置zero_as_missing = true 将其变为0
当设置zero_as_missing = false(默认)时,在稀疏矩阵里(和lightSVM),没有显示的值视为0
当设置zero_as_missing = true时,NA和0(包括在稀疏矩阵里,没有显示的值)视为缺失。

3.4使用场景(海量数据):

LightGBM 提出的主要原因就是为了解决 GBDT 在海量数据遇到的问题,让 GBDT 可以更好更快地用于工业实践。在 GBDT 在每一次迭代的时候,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。尤其面对工业级海量的数据,普通的 GBDT 算法是不能满足其需求的。LightGBM 像训练神经网络等算法一样,通过批处理使训练数据的大小不会受到内存限制。

WHY

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值