目录
2.4 基于最大深度的 Leaf-wise 的垂直生长算法(带深度限制的 Leaf-wise 算法)
1. LightGBM简介
LightGBM (Light Gradient Boosting Machine)由微软提出,主要用于解决 GDBT 在海量数据中遇到的问题,以便其可以更好更快地用于工业实践中。
常用的机器学习算法,例如神经网络等算法,都可以以mini-batch的方式训练,训练数据的大小不会受到内存限制。而GBDT在每一次迭代的时候,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。尤其面对工业级海量的数据,普通的GBDT算法是不能满足其需求的。
GBDT (Gradient Boosting Decision Tree)的主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。GBDT不仅在工业界应用广泛,通常被用于