【超详细】LightGBM介绍与应用

LightGBM是微软提出的高效梯度提升机,针对GBDT在大数据中的挑战,提供了多种优化策略,如单边梯度抽样、直方图算法、互斥特征捆绑和Leaf-wise生长算法。直方图算法减少了内存和计算成本,特征并行和数据并行优化了训练速度,而类别特征支持和Cache命中率优化提升了模型性能。LightGBM在速度和内存使用上优于XGBoost,适用于大规模数据处理。尽管可能存在过拟合风险,但通过限制最大深度可有效缓解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. LightGBM简介

2. LightGBM详细介绍

2.1 单边梯度抽样算法

2.2 直方图算法

2.3 互斥特征捆绑算法

 2.4 基于最大深度的 Leaf-wise 的垂直生长算法(带深度限制的 Leaf-wise 算法)

2.5 类别特征最优分割 (直接支持类别特征)

 2.6 特征并行和数据并行

2.6.1 特征并行

2.6.2 数据并行

2.6.3 投票并行 

2.7  Cache命中率优化

3. LightGBM的优缺点

3.1 优点

(1)速度更快

(2)内存更小

 3.2 缺点

4. python实例

4.1 安装LightGBM依赖包

4.2 LightGBM分类和回归 

5. 相关论文


 

1. LightGBM简介

LightGBM (Light Gradient Boosting Machine)由微软提出,主要用于解决 GDBT 在海量数据中遇到的问题,以便其可以更好更快地用于工业实践中。

常用的机器学习算法,例如神经网络等算法,都可以以mini-batch的方式训练,训练数据的大小不会受到内存限制。而GBDT在每一次迭代的时候,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。尤其面对工业级海量的数据,普通的GBDT算法是不能满足其需求的。

GBDT (Gradient Boosting Decision Tree)的主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。GBDT不仅在工业界应用广泛,通常被用于

### LightGBM 机器学习框架介绍 #### 项目背景概述 LightGBM 是由微软推出的一个开源梯度提升决策树(GBDT)框架,旨在提供高效的训练过程以及较低的内存占用。该工具特别适合于处理大规模数据集,在保持高精度的同时实现了性能上的优化[^1]。 #### 技术特性详解 为了克服传统 GBDT 训练过程中存在的效率低下问题,LightGBM 引入了直方图算法来加速节点分裂计算。具体来说,它不是像常规方法那样精确查找最佳分割点,而是先将特征值离散化成若干个区间(即构建直方图),再根据这些区间的统计信息决定最优切分位置。这种方法不仅减少了不必要的浮点运算次数,而且使得缓存命中率更高,从而进一步提升了整体执行速度[^2]。 此外,LightGBM 还具备其他多项技术创新: - **Leaf-wise (Best-first) Tree Growth**: 不同于传统的按层次生长方式,采用叶子优先策略能够更早地收敛到局部极小值附近; - **支持类别型特征直接输入**:无需事先转换为数值形式即可参建模流程; - **内置交叉验证功能和支持多种评估指标**:方便用户快速调整超参数设置以获得理想效果; - **强大的并行处理能力**:无论是单机多线程还是分布式集群环境下都能发挥出色表现[^5]。 #### 应用场景实例 由于上述优势的存在,LightGBM 已经被广泛应用于广告推荐、金融风控等多个领域当中。尤其是在面对海量样本量的情况下,相比同类产品往往能展现出更为明显的竞争力。例如某电商平台利用此技术成功降低了商品点击预估模型的学习时间和资源开销,最终提高了业务转化率[^3]。 ```python import lightgbm as lgb from sklearn.datasets import make_classification X, y = make_classification(n_samples=1000) train_data=lgb.Dataset(X,y) params={ 'objective':'binary', 'metric':'auc' } bst=lgb.train(params, train_data,num_boost_round=10) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

allein_STR

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值