二叉排序树(BST)的创建、遍历和删除 _ java代码实现

1、基本介绍

  • 二叉排序树:BST: (Binary Sort Tree),又称二叉查找树(Binary Search Tree),亦称二叉搜索树。对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大。
  • 特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点

2、二叉排序树的功能实现

  • 示例,将数组Array(7,3,10,12,5,1,9,2),创建成对应的二叉排序树如图
    在这里插入图片描述

  • 二叉排序树创建和遍历

    • 一个数组创建成对应的二叉排序树,思路是判断待加入结点A的值的大小,
      • 若比当前结点N小且当前结点的左子结点为空,则将结点A加到结点N的左子结点;若结点N的左子结点不为空,则需向结点N的左子结点进行递归;
      • 若比当前结点N大且当前结点的右子结点为空,则将结点A加到结点N的右子结点;若结点N的右子结点不为空,则需向结点N的右子结点进行递归;
    • 使用中序遍历二叉排序树
  • 二叉排序树的删除

    • 二叉排序树的删除情况比较复杂,有下面三种情况需要考虑
      • 删除叶子节点 (比如:2,5,9,12)
      • 删除只有一颗子树的节点(比如:1)
      • 删除有两颗子树的节点(比如:7,3,10)
    • 删除思路

    第一种情况:删除叶子节点(比如:2,5,9,12)

    思路
    (1) 需求先找到要删除的结点targetNode

    (2) 找到targetNode的父结点parent

    (3) 确定targetNode是parent的左子结点还是右子结点

    (4) 根据前面的情况来对应删除

    左子结点parent.left = null

    右子结点parent.right = null;

    第二种情况:删除只有一颗子树的节点比如1

    思路

    (1) 需求先去找到要删除的结点targetNode

    (2) 找到targetNode的父结点parent

    (3) 确定targetNode 的子结点是左子结点还是右子结点

    (4) targetNode是parent 的左子结点还是右子结点

    (5) 如果targetNode有左子结点

    5.1如果targetNode是parent 的左子结点,则parent.left = targetNode.left;

    5.2如果targetNode是parent的右子结点,则parent.right = targetNode.left;

    (6)如果targetNode有右子结点

    6.1如果targetNode是 parent 的左子结点,则parent.left = targetNode.right;

    6.2如果targetNode是 parent的右子结点,则parent.right = targetNode.right;

    第三种情况:删除有两颗子树的节点.(比如:7,3,10 )

    思路

    (1) 需求先去找到要删除的结点targetNode

    (2) 找到targetNode的父结点parent

    (3) 从targetNode 的右子树找到最小的结点(或从左子树找到最大的结点)

    (4) 用一个临时变量,将最小结点的值保存temp = 12

    (5) 删除该最小结点

    (6) targetNode.value = temp

3、代码实现

public class BinarySortTreeDemo {
    public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
        BinarySortTree binarySortTree = new BinarySortTree();
        //循环的添加结点到二叉排序树
        for (int i = 0; i < arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        //中序遍历二叉排序树
        System.out.println("中序遍历二叉排序树");
        binarySortTree.infixOrder(); //1,3,5,7,9,10,12

        //1.测试删除叶子节点 (比如:2,5,9,12)
        //binarySortTree.delNode(2);
        //2.测试删除只有一颗子树的节点(比如:1)
        //binarySortTree.delNode(1);
        //3.删除有两颗子树的节点(比如:7,3,10)
        binarySortTree.delNode(7);
        System.out.println("删除结点后");
        binarySortTree.infixOrder();

    }
}

//创建二叉排序树
class BinarySortTree {
    private Node root;

    public Node getRoot() {
        return root;
    }

    //添加结点的方法
    public void add(Node node) {
        if (root == null) {
            root = node; //如果root为空则直接让root指向node
        } else {
            root.add(node);
        }
    }

    //中序遍历
    public void infixOrder() {
        if (root != null) {
            root.infixOrder();
        } else {
            System.out.println("二叉排序树为空,不能遍历");
        }
    }

    //查找要删除的结点
    public Node search(int value) {
        if (root == null) {
            return null;
        } else {
            return root.search(value);
        }
    }

    //查找父结点
    public Node searchParent(int value) {
        if (root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }

    /**
     * 1.返回的以node为根结点的二叉排序树的最小结点的值
     * 2.删除node为根结点的二叉排序树的最小结点
     *
     * @param node 传入的结点(当做二叉排序树的根结点)
     * @return 返回的以node为根结点的二叉排序树的最小结点的值
     */
    public int delRightTreeMin(Node node) {
        Node target = node;
        //循环的查找左结点,就会找到最小值
        while (target.left != null) {
            target = target.left;
        }
        //这时target就指向了最小结点
        //删除最小结点
        delNode(target.value);
        return target.value;
    }

    //删除结点
    public void delNode(int value) {
        if (root == null) {
            return;
        } else {
            //1.需先找到要删除的结点 targetNode
            Node targetNode = search(value);
            //如果没有找到要删除的结点
            if (targetNode == null) {
                return;
            }
            //如果当前这棵二叉排序树只有一个结点
            if (root.left == null && root.right == null) {
                root = null;
                return;
            }
            //去找到targetNode的父结点
            Node parent = searchParent(value);

            if (targetNode.left == null && targetNode.right == null) {//如果要删除的结点是叶子结点(第一种情况)
                //判断targetNode 是父结点的左子结点,还是右子结点
                if (parent.left != null && parent.left.value == value) { //是左子结点
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) { //是右子结点
                    parent.right = null;
                }
            } else if (targetNode.left != null && targetNode.right != null) {//第三种情况:删除有两棵子树的结点
                //向右子树找最小的
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;
            } else { //第二种情况:删除只有一棵子树的结点
                //如果要删除的结点有左子结点
                if (targetNode.left != null) {
                    if (parent != null) {
                        //如果targetNode是parent的左子结点
                        if (parent.left.value == value) {
                            parent.left = targetNode.left;
                        } else { //如果targetNode是parent的右子结点
                            parent.right = targetNode.left;
                        }
                    } else {
                        root = targetNode.left;
                    }
                } else { //要删除的结点有右子结点
                    if (parent != null) {
                        //如果targetNode是parent的左子结点
                        if (parent.left.value == value) {
                            parent.left = targetNode.right;
                        } else { //如果targetNode是parent的右子结点
                            parent.right = targetNode.right;
                        }
                    } else {
                        root = targetNode.right;
                    }
                }
            }
        }
    }

}

//创建Node结点
class Node {
    int value;
    Node left;
    Node right;

    public Node(int value) {
        this.value = value;
    }

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    //添加结点的方法
    //递归的形式添加结点,注意需要满足二叉排序树的要去
    public void add(Node node) {
        if (node == null) {
            return;
        }
        //判断传入的结点的值,和当前子树的根结点的值关系
        if (node.value < this.value) {
            //如果当前左子结点为null
            if (this.left == null) {
                this.left = node;
            } else {
                //递归的向左子树添加
                this.left.add(node);
            }
        } else {//添加的结点的值大于当前结点的值
            if (this.right == null) {
                this.right = node;
            } else {
                this.right.add(node);
            }
        }
    }

    //中序遍历
    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);

        if (this.right != null) {
            this.right.infixOrder();
        }
    }

    //查找要删除的结点
    /**
     * @param value 希望删除的结点的值
     * @return 如果找到返回该结点, 否则返回null
     */
    public Node search(int value) {
        if (value == this.value) { //找到就是该结点
            return this;
        } else if (value < this.value) { //如果查找的值小于当前结点,向左子树递归查找
            //如果左子结点为空
            if (this.left == null) {
                return null;
            }
            return this.left.search(value);
        } else {//如果查找的值不小于当前结点,向右子树递归查找
            if (this.right == null) {
                return null;
            }
            return this.right.search(value);
        }
    }

    //查找要删除的结点的父结点

    /**
     * @param value 要查找的结点的值
     * @return 返回的是要删除结点的父结点,如果没有就返回null
     */
    public Node searchParent(int value) {
        //如果当前结点就是要删除的结点的父结点,就返回
        if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
            return this;
        } else {
            //如果查找的值小于当前结点的值,并且当前结点的左子结点不为空
            if (value < this.value && this.left != null) {
                return this.left.searchParent(value);//向左子树递归查找
            } else if (value >= this.value && this.right != null) {
                return this.right.searchParent(value);//向右子树递归查找
            } else {
                return null; //没有父结点
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fly-ping

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值