1、基本介绍
- 二叉排序树:BST: (Binary Sort Tree),又称二叉查找树(Binary Search Tree),亦称二叉搜索树。对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大。
- 特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点
2、二叉排序树的功能实现
-
示例,将数组Array(7,3,10,12,5,1,9,2),创建成对应的二叉排序树如图
-
二叉排序树创建和遍历
- 一个数组创建成对应的二叉排序树,思路是判断待加入结点A的值的大小,
- 若比当前结点N小且当前结点的左子结点为空,则将结点A加到结点N的左子结点;若结点N的左子结点不为空,则需向结点N的左子结点进行递归;
- 若比当前结点N大且当前结点的右子结点为空,则将结点A加到结点N的右子结点;若结点N的右子结点不为空,则需向结点N的右子结点进行递归;
- 使用中序遍历二叉排序树
- 一个数组创建成对应的二叉排序树,思路是判断待加入结点A的值的大小,
-
二叉排序树的删除
- 二叉排序树的删除情况比较复杂,有下面三种情况需要考虑
- 删除叶子节点 (比如:2,5,9,12)
- 删除只有一颗子树的节点(比如:1)
- 删除有两颗子树的节点(比如:7,3,10)
- 删除思路
第一种情况:删除叶子节点(比如:2,5,9,12)
思路
(1) 需求先找到要删除的结点targetNode(2) 找到targetNode的父结点parent
(3) 确定targetNode是parent的左子结点还是右子结点
(4) 根据前面的情况来对应删除
左子结点parent.left = null
右子结点parent.right = null;
第二种情况:删除只有一颗子树的节点比如1
思路
(1) 需求先去找到要删除的结点targetNode
(2) 找到targetNode的父结点parent
(3) 确定targetNode 的子结点是左子结点还是右子结点
(4) targetNode是parent 的左子结点还是右子结点
(5) 如果targetNode有左子结点
5.1如果targetNode是parent 的左子结点,则parent.left = targetNode.left;
5.2如果targetNode是parent的右子结点,则parent.right = targetNode.left;
(6)如果targetNode有右子结点
6.1如果targetNode是 parent 的左子结点,则parent.left = targetNode.right;
6.2如果targetNode是 parent的右子结点,则parent.right = targetNode.right;
第三种情况:删除有两颗子树的节点.(比如:7,3,10 )
思路
(1) 需求先去找到要删除的结点targetNode
(2) 找到targetNode的父结点parent
(3) 从targetNode 的右子树找到最小的结点(或从左子树找到最大的结点)
(4) 用一个临时变量,将最小结点的值保存temp = 12
(5) 删除该最小结点
(6) targetNode.value = temp
- 二叉排序树的删除情况比较复杂,有下面三种情况需要考虑
3、代码实现
public class BinarySortTreeDemo {
public static void main(String[] args) {
int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
BinarySortTree binarySortTree = new BinarySortTree();
//循环的添加结点到二叉排序树
for (int i = 0; i < arr.length; i++) {
binarySortTree.add(new Node(arr[i]));
}
//中序遍历二叉排序树
System.out.println("中序遍历二叉排序树");
binarySortTree.infixOrder(); //1,3,5,7,9,10,12
//1.测试删除叶子节点 (比如:2,5,9,12)
//binarySortTree.delNode(2);
//2.测试删除只有一颗子树的节点(比如:1)
//binarySortTree.delNode(1);
//3.删除有两颗子树的节点(比如:7,3,10)
binarySortTree.delNode(7);
System.out.println("删除结点后");
binarySortTree.infixOrder();
}
}
//创建二叉排序树
class BinarySortTree {
private Node root;
public Node getRoot() {
return root;
}
//添加结点的方法
public void add(Node node) {
if (root == null) {
root = node; //如果root为空则直接让root指向node
} else {
root.add(node);
}
}
//中序遍历
public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("二叉排序树为空,不能遍历");
}
}
//查找要删除的结点
public Node search(int value) {
if (root == null) {
return null;
} else {
return root.search(value);
}
}
//查找父结点
public Node searchParent(int value) {
if (root == null) {
return null;
} else {
return root.searchParent(value);
}
}
/**
* 1.返回的以node为根结点的二叉排序树的最小结点的值
* 2.删除node为根结点的二叉排序树的最小结点
*
* @param node 传入的结点(当做二叉排序树的根结点)
* @return 返回的以node为根结点的二叉排序树的最小结点的值
*/
public int delRightTreeMin(Node node) {
Node target = node;
//循环的查找左结点,就会找到最小值
while (target.left != null) {
target = target.left;
}
//这时target就指向了最小结点
//删除最小结点
delNode(target.value);
return target.value;
}
//删除结点
public void delNode(int value) {
if (root == null) {
return;
} else {
//1.需先找到要删除的结点 targetNode
Node targetNode = search(value);
//如果没有找到要删除的结点
if (targetNode == null) {
return;
}
//如果当前这棵二叉排序树只有一个结点
if (root.left == null && root.right == null) {
root = null;
return;
}
//去找到targetNode的父结点
Node parent = searchParent(value);
if (targetNode.left == null && targetNode.right == null) {//如果要删除的结点是叶子结点(第一种情况)
//判断targetNode 是父结点的左子结点,还是右子结点
if (parent.left != null && parent.left.value == value) { //是左子结点
parent.left = null;
} else if (parent.right != null && parent.right.value == value) { //是右子结点
parent.right = null;
}
} else if (targetNode.left != null && targetNode.right != null) {//第三种情况:删除有两棵子树的结点
//向右子树找最小的
int minVal = delRightTreeMin(targetNode.right);
targetNode.value = minVal;
} else { //第二种情况:删除只有一棵子树的结点
//如果要删除的结点有左子结点
if (targetNode.left != null) {
if (parent != null) {
//如果targetNode是parent的左子结点
if (parent.left.value == value) {
parent.left = targetNode.left;
} else { //如果targetNode是parent的右子结点
parent.right = targetNode.left;
}
} else {
root = targetNode.left;
}
} else { //要删除的结点有右子结点
if (parent != null) {
//如果targetNode是parent的左子结点
if (parent.left.value == value) {
parent.left = targetNode.right;
} else { //如果targetNode是parent的右子结点
parent.right = targetNode.right;
}
} else {
root = targetNode.right;
}
}
}
}
}
}
//创建Node结点
class Node {
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
//添加结点的方法
//递归的形式添加结点,注意需要满足二叉排序树的要去
public void add(Node node) {
if (node == null) {
return;
}
//判断传入的结点的值,和当前子树的根结点的值关系
if (node.value < this.value) {
//如果当前左子结点为null
if (this.left == null) {
this.left = node;
} else {
//递归的向左子树添加
this.left.add(node);
}
} else {//添加的结点的值大于当前结点的值
if (this.right == null) {
this.right = node;
} else {
this.right.add(node);
}
}
}
//中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}
//查找要删除的结点
/**
* @param value 希望删除的结点的值
* @return 如果找到返回该结点, 否则返回null
*/
public Node search(int value) {
if (value == this.value) { //找到就是该结点
return this;
} else if (value < this.value) { //如果查找的值小于当前结点,向左子树递归查找
//如果左子结点为空
if (this.left == null) {
return null;
}
return this.left.search(value);
} else {//如果查找的值不小于当前结点,向右子树递归查找
if (this.right == null) {
return null;
}
return this.right.search(value);
}
}
//查找要删除的结点的父结点
/**
* @param value 要查找的结点的值
* @return 返回的是要删除结点的父结点,如果没有就返回null
*/
public Node searchParent(int value) {
//如果当前结点就是要删除的结点的父结点,就返回
if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
return this;
} else {
//如果查找的值小于当前结点的值,并且当前结点的左子结点不为空
if (value < this.value && this.left != null) {
return this.left.searchParent(value);//向左子树递归查找
} else if (value >= this.value && this.right != null) {
return this.right.searchParent(value);//向右子树递归查找
} else {
return null; //没有父结点
}
}
}
}