CS231n-assignment1-two-Layer Neural Network

In[1]:

import numpy as np
import matplotlib.pyplot as plt

from cs231n.classifiers.neural_net import TwoLayerNet

from __future__ import print_function

#%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

%load_ext autoreload
%autoreload 2

def rel_error(x, y):
    """ returns relative error """
    return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))

创建一个小的网和一些小数据来检查您的实现。
注意,我们为可重复实验设置了随机种子
ln[2]:

input_size = 4
hidden_size = 10
num_classes = 3
num_inputs = 5

def init_toy_model():
    np.random.seed(0)
    return TwoLayerNet(input_size, hidden_size, num_classes, std=1e-1)

def init_toy_data():
    np.random.seed(1)
    X = 10 * np.random.randn(num_inputs, input_size)
    y = np.array([0, 1, 2, 2, 1])
    return X, y

net = init_toy_model()
X, y = init_toy_data()

正向传递:

反向传递:

计算score:
完成classifiers/neural.py中的TwoLayerNet.loss填写:

    def loss(self, X, y=None, reg=0.0):
        """
        Compute the loss and gradients for a two layer fully connected neural
        network.

        Inputs:
        - X: Input data of shape (N, D). Each X[i] is a training sample.
        - y: Vector of training labels. y[i] is the label for X[i], and each y[i] is
          an integer in the range 0 <= y[i] < C. This parameter is optional; if it
          is not passed then we only return scores, and if it is passed then we
          instead return the loss and gradients.
        - reg: Regularization strength.

        Returns:
        If y is None, return a matrix scores of shape (N, C) where scores[i, c] is
        the score for class c on input X[i].

        If y is not None, instead return a tuple of:
        - loss: Loss (data loss and regularization loss) for this batch of training
          samples.
        - grads: Dictionary mapping parameter names to gradients of those parameters
          with respect to the loss function; has the same keys as self.params.
        """
        # Unpack variables from the params dictionary
        W1, b1 = self.params['W1'], self.params['b1']
        W2, b2 = self.params['W2'], self.params['b2']
        N, D = X.shape

        # Compute the forward pass
        scores = None
        #############################################################################
        # TODO: Perform the forward pass, computing the class scores for the input. #
        # Store the result in the scores variable, which should be an array of      #
        # shape (N, C).                                                             #
        #############################################################################
        fc1 = X.dot(W1) + b1  # fully connected
        X2 = np.maximum(0, fc1)  # ReLU
        #2-layer参数表达式
        scores = X2.dot(W2) + b2  # fully connected
        #############################################################################
        #                              END OF YOUR CODE                             #
        #######################################################################3######

        # If the targets are not given then jump out, we're done
        if y is None:
            return scores

        # Compute the loss
        loss = None
        #############################################################################
        # TODO: Finish the forward pass, and compute the loss. This should include  #
        # both the data loss and L2 regularization for W1 and W2. Store the result  #
        # in the variable loss, which should be a scalar. Use the Softmax           #
        # classifier loss.                                                          #
        #############################################################################
        scores -= np.max(scores, axis=1, keepdims=True)  # avoid numeric instability
        scores_exp = np.exp(scores)
        softmax_matrix = scores_exp / np.sum(scores_exp, axis=1, keepdims=True)
        loss = np.sum(-np.log(softmax_matrix[np.arange(N), y]))
        loss /= N
        loss += reg * (np.sum(W2 * W2) + np.sum(W1 * W1))  # regularization
        #############################################################################
        #                              END OF YOUR CODE                             #
        #############################################################################

        # Backward pass: compute gradients
        grads = {
   
   }
        #############################################################################
        # TODO: Compute the backwa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Esaka7

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值