信号经瑞利衰落后的接收信噪比概率密度函数推导

本文详细推导了信号在经历瑞利衰落后的接收信噪比概率密度函数,涉及Gamma、高斯、复高斯、Rayleigh、Chi-squared和Exponential分布,以及平坦衰落条件下的信号传输模型,重点讲解了符号信噪比和瑞利信道能量的概率密度函数。
摘要由CSDN通过智能技术生成

先验知识

Gamma、高斯分布、复高斯分布、Rayleigh、Chi-squared、Exponential定义及相关关系

在这里插入图片描述

Gamma分布的性质

X ∼ Γ ( α , λ ) c X ∼ Γ ( α , λ c ) X\sim\Gamma(\alpha,\lambda)\\cX\sim\Gamma(\alpha,\frac{\lambda}{c}) XΓ(α,λ)cXΓ(α,cλ)

平坦衰落下的信号传输模型

y = h s + n y=hs+n y=hs+n

符号信噪比

S N R = E s / N 0 SNR=E_s/N_0 SNR=Es/N0

信号经瑞利衰落后的接收信噪比概率密度函数推导(含瑞利信道能量的PDF推导)

在这里插入图片描述

  • 7
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
瑞利分布是一种连续概率分布,它通常用于描述随机变量的幅值。它的概率密度函数为: $$ f(x;\sigma) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} $$ 其中,$x$ 是随机变量的取值,$\sigma$ 是瑞利分布的参数,通常被称为“尺度参数”,它决定了分布的形状和尺度。 现在我们来推导一下瑞利分布的概率密度函数。 假设有一个随机变量 $X$,它服从瑞利分布,即 $X \sim \operatorname{Rayleigh}(\sigma)$。我们要求的是 $X$ 取某个值的概率密度。 由于 $X$ 是一个连续型随机变量,我们不能直接计算它取某个值的概率,而只能计算它在某个区间内取值的概率。因此,我们需要先求出它在区间 $(x, x + \Delta x)$ 内取值的概率密度。 假设 $f(x)$ 是 $X$ 的概率密度函数,那么 $X$ 在 $(x, x + \Delta x)$ 内取值的概率为: $$ P(x < X < x + \Delta x) \approx f(x) \Delta x $$ 这个式子的意思是,$X$ 在 $(x, x + \Delta x)$ 内取值的概率约等于 $f(x)$ 乘以区间的长度 $\Delta x$。我们用 $\approx$ 表示这是一个近似值,因为我们假设 $f(x)$ 在区间 $(x, x + \Delta x)$ 内是一个常数,但实际上它是一个变化的函数。 现在,我们要求的是 $X$ 取某个值 $x$ 的概率密度,即 $P(X = x)$。由于 $X$ 是一个连续型随机变量,所以 $P(X = x) = 0$,也就是说 $X$ 取任何一个确定的值的概率都是 $0$。 但是,我们可以求出 $X$ 在某个范围内取值的概率密度。例如,$X$ 在 $(x, x + \Delta x)$ 内取值的概率密度为 $f(x)$。当 $\Delta x$ 趋近于 $0$ 时,这个概率密度就会趋近于 $0$。因此,我们可以得到: $$ P(x \leq X \leq x + \Delta x) = \int_x^{x+\Delta x} f(t) dt \approx f(x) \Delta x $$ 这个式子的意思是,$X$ 在 $(x, x + \Delta x)$ 内取值的概率密度约等于 $f(x)$ 乘以区间的长度 $\Delta x$。 现在,我们可以对 $f(x) \Delta x$ 进行一些变形,得到: $$ f(x) = \lim_{\Delta x \to 0} \frac{P(x \leq X \leq x + \Delta x)}{\Delta x} $$ 这个式子的意思是,$f(x)$ 可以看作是 $X$ 在 $(x, x + \Delta x)$ 内取值的概率密度除以区间的长度 $\Delta x$,在 $\Delta x$ 趋近于 $0$ 的极限下求得。 现在,我们来计算这个极限。由于 $X$ 的概率密度函数为 $f(x) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}$,所以: $$ \begin{aligned} & \lim_{\Delta x \to 0} \frac{P(x \leq X \leq x + \Delta x)}{\Delta x} \\ = & \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} \\ = & \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} \frac{t}{\sigma^2} e^{-\frac{t^2}{2\sigma^2}} dt}{\Delta x} \\ = & \lim_{\Delta x \to 0} \frac{\frac{(x+\Delta x)^2}{2\sigma^2} e^{-\frac{(x+\Delta x)^2}{2\sigma^2}} - \frac{x^2}{2\sigma^2} e^{-\frac{x^2}{2\sigma^2}}}{\Delta x} \\ = & \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} \end{aligned} $$ 因此,瑞利分布的概率密度函数为: $$ f(x;\sigma) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} $$ 这就是瑞利分布的概率密度函数推导过程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值