砸饭碗系列一、BPSK高斯、瑞利、莱斯信道误码率对比(手把手推导瑞利信道理论误码率公式)

本篇文章整合了所有可以用的代码,需要代码请添加微信公众号,有问题请与作者联系qq:286820790

一、砸csdn上一些过于贵的代码人的饭碗

本文是做了BPSK高斯信道理论以及仿真的误码率曲线、瑞利信道理论以及仿真的误码率曲线、莱斯信道仿真的误码率曲线。(注意没有莱斯信道理论的误码率曲线公式,为什么呢,因为我没做出来!)

做这个的原因是,想学习瑞利跟莱斯信道,结果发现csdn 上拥有这个曲线的博主,居然要收80多块钱!于是果断决定砸他饭碗! 嗯哼 ,搞了五天左右几乎下载csdn上所有代码 整合出了,这三个信道的误码率仿真图。 但是美中不足的是缺少莱斯信道的理论误码率曲线。这个日后如果有机会搞清楚后,会补上。

二、瑞利信道

对于$y=h x+n$ ,h为信道衰落。y为接收数据,x为发射数据,n服从均值0方差\sigma^2的高斯分布。

高斯信道下BPSK理论误码率公式,其中E_bN_o是信噪比dB形式,也就是我们设置的0:1:20;

$P_b=\frac{1}{2} \operatorname{erfc}\left(\sqrt{​{snr}}\right)=Q(\sqrt{2snr})$

snr=10^{E_bN_o/10}

当信号经过瑞利衰落信道后,接收信噪比为 \gamma=|h|^{2}snr ,因此,对于给定ℎ,理论误比特率为

$P_b=\frac{1}{2} \operatorname{erfc}\left(\sqrt{​{\gamma}}\right)=Q(\sqrt{2\gamma})$

由于|h|^{2}服从自由度为2的卡方分布,因此\gamma也服从卡方分布只不过多个倍数snr而已,卡方分布这个大家可以自己去查查,我们直接给出公式

$f(x)=\left\{\begin{array}{c}\frac{1}{2 \sigma^2} e^{-\frac{x}{2 \sigma^2}}, x>0 \\ \text { b, otherwise }\end{array}\right.$

$p(\gamma)=\frac{1}{2 snr} e^{\frac{-\gamma}{2snr}}, \gamma \geq 0$

但是对于h来说他是个随机变量,因此必须以积分的形式求出误码率,积分公式如下

公式一、$P_b=\int_0^{\infty} \frac{1}{2} \operatorname{erfc}(\sqrt{\gamma}) p(\gamma) d \gamma$

通过积分结果可以得到

公式二、$P_b=\frac{1}{2}\left(1-\sqrt{\frac{snr}{snr+1}}\right)$

但是很多人疑问如何从公式一的积分形式得到公式二、最终的结果的,这里我给大家推导一下,其实就是用了高数中分部积分的原理而已。积分过程如下:

P_b=\int_0^{\infty} \frac{1}{2} \operatorname{erfc}(\sqrt{\gamma}) p(\gamma) d \gamma \\=\int_0^{\infty}[ \frac{1}{\sqrt{\pi}}\int_\gamma^{\infty}\exp(-t^2)d\gamma ]*\frac{1}{2 snr} e^{\frac{-\gamma}{2snr}}d \gamma\\=\frac{-1}{\sqrt{\pi}}\int_0^{\infty}[ \int_\gamma^{\infty}\exp(-t^2)d\gamma ]*de^{\frac{-\gamma}{2snr}} \\=\frac{-1}{\sqrt{\pi}}*([ \int_{\sqrt{\gamma}}^{\infty}\exp(-t^2)d\gamma *e^{\frac{-\gamma}{2snr}}]_0^{\infty} -\int_0^{\infty}e^{-\gamma}*e^{\frac{-\gamma}{2snr}})d\gamma

化简后就可以得到公式二了,大家可以自己推导。

三、莱斯信道

四、matlab仿真结果

先说结论,由于莱斯信道是在瑞利信道基础上加入一条直射路径,因此功率分为两个部分,直射路径功率P1以及瑞利多径的功率P2,用莱斯因子K进行衡量,且K趋于无穷代表没有衰落,K=0等与瑞利衰落。

下面仿真图2中,K=0发现瑞利信道与莱斯信道曲线重合。

仿真图3中,K=1000;莱斯信道与BPSK理论误码率曲线重合

图1 莱斯信道衰落K=4
图2 莱斯信道衰落K=0

图3 莱斯信道衰落K=1000

 五、代码地址

大家可以扫码关注公众号,回复'''r'’获取文章和代码!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科研Beatles

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值