本篇文章整合了所有可以用的代码,需要代码请添加微信公众号,有问题请与作者联系qq:286820790
一、砸csdn上一些过于贵的代码人的饭碗
本文是做了BPSK高斯信道理论以及仿真的误码率曲线、瑞利信道理论以及仿真的误码率曲线、莱斯信道仿真的误码率曲线。(注意没有莱斯信道理论的误码率曲线公式,为什么呢,因为我没做出来!)
做这个的原因是,想学习瑞利跟莱斯信道,结果发现csdn 上拥有这个曲线的博主,居然要收80多块钱!于是果断决定砸他饭碗! 嗯哼 ,搞了五天左右几乎下载csdn上所有代码 整合出了,这三个信道的误码率仿真图。 但是美中不足的是缺少莱斯信道的理论误码率曲线。这个日后如果有机会搞清楚后,会补上。
二、瑞利信道
对于 ,h为信道衰落。y为接收数据,x为发射数据,n服从均值0方差
的高斯分布。
高斯信道下BPSK理论误码率公式,其中是信噪比dB形式,也就是我们设置的0:1:20;
当信号经过瑞利衰落信道后,接收信噪比为 ,因此,对于给定ℎ,理论误比特率为
由于服从自由度为2的卡方分布,因此
也服从卡方分布只不过多个倍数snr而已,卡方分布这个大家可以自己去查查,我们直接给出公式
但是对于h来说他是个随机变量,因此必须以积分的形式求出误码率,积分公式如下
公式一、
通过积分结果可以得到
公式二、
但是很多人疑问如何从公式一的积分形式得到公式二、最终的结果的,这里我给大家推导一下,其实就是用了高数中分部积分的原理而已。积分过程如下:
化简后就可以得到公式二了,大家可以自己推导。
三、莱斯信道
四、matlab仿真结果
先说结论,由于莱斯信道是在瑞利信道基础上加入一条直射路径,因此功率分为两个部分,直射路径功率P1以及瑞利多径的功率P2,用莱斯因子K进行衡量,且K趋于无穷代表没有衰落,K=0等与瑞利衰落。
下面仿真图2中,K=0发现瑞利信道与莱斯信道曲线重合。
仿真图3中,K=1000;莱斯信道与BPSK理论误码率曲线重合



五、代码地址
大家可以扫码关注公众号,回复'''r'’获取文章和代码!