设F[N]为相邻的小立方块的对数
则F[N]=F[N-2]+6*(N-2)2+12(N-1)2
最后一个12(N-1)^2为表面上的相邻的对数
前两部分是内部相邻的块数
#include<stdio.h>
#include<iostream>
#include<algorithm>
#define MAXN_ROW 100
#define MAXN_COL 100
using namespace std;
int f[31];
int n;
int main()
{
f[0] = 0;
f[1] = 0;
for (int i = 2; i <= 30; i++)
{
f[i] = 12 * (i - 1) * (i - 1) + f[i - 2] + 6 * (i - 2) * (i - 2);
}
while (scanf("%d", &n) != EOF)
{
if (n == 1)
printf("0\n");
else
printf("%d\n", n*n*n*(n*n*n-1)/2-f[n]);
}
return 0;
}
还有另外一种方法更好
两个相邻的小立方块对应1个面,一共有N3个小立方块,每个小立方块共有6面,则一共有6N3个面,其中6个外表面上的6N2是没用的所以说6N3-6N2
最后还要除以2