hdu 1220 计算N*N*N立方体中相邻的小立方块的对数

本文探讨了一种计算立方体表面相邻小立方块对数的方法,公式为F[N]=F[N-2]+6*(N-2)^2+12(N-1)^2,其中内部和表面的相邻块数分别被考虑。通过C++程序实现,对给定的立方体大小N,可以快速求解相邻对数。此外,还提供了另一种简化思路,即6N^3-6N^2表示所有面的相邻对数,再去除无效的外部面并除以2。该问题涉及组合数学和三维空间理解,适合计算机科学和数学爱好者研究。
摘要由CSDN通过智能技术生成

设F[N]为相邻的小立方块的对数
则F[N]=F[N-2]+6*(N-2)2+12(N-1)2
最后一个12(N-1)^2为表面上的相邻的对数
前两部分是内部相邻的块数

#include<stdio.h>
#include<iostream>
#include<algorithm>
#define MAXN_ROW 100
#define MAXN_COL 100
using namespace std;
int f[31];
int n;
int main()
{
	f[0] = 0;
	f[1] = 0;
	for (int i = 2; i <= 30; i++)
	{
		f[i] = 12 * (i - 1) * (i - 1) + f[i - 2] + 6 * (i - 2) * (i - 2);
	}
	while (scanf("%d", &n) != EOF)
	{
		if (n == 1)
			printf("0\n");
		else
			printf("%d\n", n*n*n*(n*n*n-1)/2-f[n]);
	}
	return 0;
}

还有另外一种方法更好
两个相邻的小立方块对应1个面,一共有N3个小立方块,每个小立方块共有6面,则一共有6N3个面,其中6个外表面上的6N2是没用的所以说6N3-6N2
最后还要除以2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值