两种求三角形外接圆半径的方法:
方法一:
已知三角形的三边为a,b,c,a小于等于b小于等于c,
它的外接圆半径为 R=abc/( 4S)
S为三角形面积,可由海伦公式得到:S=√[p(p-a)(p-b)(p-c)]其中P是周长的一半
证明:对于任意三角形,其面积S=(1/2)*absinC
由正弦定理:a/sinA=b/sinB=c/sinC=2R
因,c/sinC=2R
故,R=c/2sinC
又由面积公式得:sinC=2S/ab
故,R=(c/2)/(2S/ab)
即,R=abc/4S
方法二:
根据余弦定理:c2=a2+b2-2abcosC;根据正弦定理:c/sinC=2r;
又因为Sin2C+cos2C=1;将余弦定理和正弦定理带入此式可得出外接圆的半径;
HDU 1374 求三角形外接圆的半径
本文介绍了求解三角形外接圆半径的两种方法。方法一利用海伦公式和正弦定理,推导出R=abc/4S;方法二结合余弦定理、正弦定理和同角三角函数关系,得到外接圆半径。两种方法详细阐述了从三角形边长到外接圆半径的计算过程。
摘要由CSDN通过智能技术生成