Hamilton哈密顿最短路径(二进制状态压缩)

问题简述:


哈密顿最短路径即为从起点到终点,计算出经过图中所有点的最短路径。(点较少的情况)

简单理解

由于途中点较少,可能会直接想到暴力枚举所有点的全排列,然后计算最短距离,其时间复杂度为 O ( n ∗ n ! ) O(n * n !) O(nn!),但是如果使用动态规划,枚举每个点被经过的状态的话,那么可以将时间复杂度降到 O ( n 2 ∗ 2 n ) O(n ^ 2 * 2 ^ n) O(n22n).

解题思路

假设点a,那么经过点a 的状态只有经过和还没有经过两个状态,所以这里就可以用到二进制状态压缩,将经过定义为1,没经过定义为0。假设途中一共又n个点,那么其状态就可以用一个长度为n的二进制数表示。

我们在使用DP的时候,DP的初态就是在起点上的状态,由于起点是被经过了的,所以现在的二进制数为1, ,DP的终态就是在终点的时候,所有点都已经被经过了,所以其经过点的状态就是由n个1组成的二进制数,转换为十进制就为 ( 1 < < n ) − 1 (1 << n) - 1 (1<<n)1

由于我们要知道的不是从起点到终点的最短路径,而是经过所有点的最短路径,所以我们要在DP的每一个状态下,计算出起点到当前经过点的最短路径。

即:当遍历到状态 i ( 二 进 制 状 态 的 十 进 制 表 示 ) i (二进制状态的十进制表示) i() 时,在此状态下点 j j j 是被经历过了的,那么在这个状态下,起点到 j j j 点的距离在一定要计算出是最短的,怎么计算出最短的呢,就是枚举所有点,作为中间点,将上一个还未经过 j 点状态下到被枚举点的最短距离,加上枚举点到j点的距离:
k为中间点, i x o r ( 1 < < j ) i ^{xor} (1 << j) ixor(1<<j) 即为上一个状态,所以得到动态方程如下:

动态方程:
d p [ i ] [ j ] = m i n ( d p [ i ] [ j ] , d p [ i x o r ( 1 < < j ) ] [ k ] + w e i g h t [ k ] [ j ] dp[i][j] = min(dp[i][j], dp[i ^{xor} (1 << j)][k] + weight[k][j] dp[i][j]=min(dp[i][j],dp[ixor(1<<j)][k]+weight[k][j]

代码模板示例:
memset(dp, INF, sizeof(dp));//初始化
dp[1][0] = 0;//走了1个点时的第0个点的最短路
for(int i = 1; i < 1 << n; i ++ ){//枚举每一个点的走或者未走情况
    for(int j = 0; j < n; j ++ ){//枚举每一个点
        if(i >> j & 1){//此时的j点是已走点
            for(int k = 0; k < n; k ++ ){//枚举所有点
                dp[i][j] = min(dp[i][j], dp[i ^ 1 << j][k] + weight[k][j]); //求出i的状态下到第j点的最短路
            }
        }
    }
}
cout << dp[(1 << n) - 1][n - 1] << "\n";
  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
哈密顿回路是一种经过图中每个节点一次且仅一次的回路。哈密顿回路问题是一个NP完全问题,因此没有已知的多项式时间算法可以解决这个问题。不过,可以使用启发式算法来解决近似的问题。 下面是一个使用Java实现的近似算法: ```java import java.util.*; public class HamiltonianPath { private static int[][] graph; // 图 private static int[] path; // 存储路径 private static boolean[] visited; // 标记是否访问过 private static int n; // 节点数 public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); graph = new int[n][n]; path = new int[n]; visited = new boolean[n]; // 构建图 for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { graph[i][j] = sc.nextInt(); } } // 从第一个节点出发 path[0] = 0; visited[0] = true; if(findHamiltonianPath(1)) { // 打印路径 for(int i = 0; i < n; i++) { System.out.print(path[i] + " "); } } else { System.out.println("No Hamiltonian Path exists"); } } // 查找哈密顿路径 private static boolean findHamiltonianPath(int pos) { // 如果已经遍历完所有节点 if(pos == n) { // 判断最后一个节点是否与第一个节点相邻 if(graph[path[pos - 1]][path[0]] == 1) { return true; } else { return false; } } // 遍历其它节点 for(int i = 1; i < n; i++) { if(isValid(i, pos)) { path[pos] = i; visited[i] = true; if(findHamiltonianPath(pos + 1)) { return true; } // 回溯 visited[i] = false; } } return false; } // 判断节点是否可达 private static boolean isValid(int node, int pos) { // 如果节点已经被访问过,返回false if(visited[node]) { return false; } // 如果前一个节点与当前节点不相邻,返回false if(graph[path[pos - 1]][node] == 0) { return false; } return true; } } ``` 在这个算法中,我们使用了回溯的方法来查找哈密顿路径。我们从第一个节点开始,依次尝试访问其它节点,直到找到一条哈密顿路径或者遍历完所有节点。在查找过程中,我们使用visited数组来标记节点是否已经被访问过,使用path数组来存储路径。isValid方法用来判断节点是否可达。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值