神经元模型(Neural Neuron Model)是神经网络中基本的计算单元,灵感来源于生物神经元的工作方式。它模拟了生物神经元的输入、处理和输出过程,并用于构建人工神经网络模型。通过神经元的相互连接和计算,神经网络能够学习复杂的模式和功能。
神经元模型的基本结构
一个典型的人工神经元模型由以下几个主要组成部分构成:
-
输入(Input):
神经元接收来自其他神经元或外部环境的输入信号。这些输入通常表示为向量 x = [ x 1 , x 2 , … , x n ] \mathbf{x} = [x_1, x_2, \dots, x_n] x=[x1,x2