
自动驾驶
文章平均质量分 78
winds~
纸上得来终觉浅,绝知此事要躬行。
展开
-
仿真测试时,如何设计具体的量化评价指标
驾驶分数是一个综合评估自动驾驶系统表现的指标,涵盖了多方面的因素,如任务完成度、违规行为、安全性、舒适度与效率等。通过加权计算这些因素的分数,驾驶分数能够提供一个简洁、量化的方式,帮助开发者评估自动驾驶系统的表现,并指导其优化和改进。原创 2025-01-15 21:23:59 · 775 阅读 · 0 评论 -
曲率的定义
曲率是描述曲线弯曲程度的量度。在二维空间中,对于一条曲线,曲率κκdθdsκdsdθdθ是曲线的切线方向(即车辆朝向)相对于路径切线的变化量。ds是路径上的微小弧长增量。apollo代码中,kappa()函数返回的是车辆当前位置的曲率,即路径在该位置的弯曲度。通过计算车辆的朝向(航向角)和路径的弯曲程度,kappa可以决定车辆当前需要多少转弯量以及转弯的方向(左或右)。原创 2024-11-09 11:20:49 · 1059 阅读 · 0 评论 -
自动驾驶-问题笔记-待解决
在学习apollo时,常把控制的周期为10ms,规划的周期为100ms,规划的轨迹是一条长度为4~8秒的一个关于时间的轨迹,控制每隔10ms向规划搜索一次轨迹点用于控制。每隔100ms会计算一条新的轨迹,这里什么时候会发布一次轨迹呢?因为规划模块可能在当前时刻T开始规划轨迹的计算,计算耗时可能30ms,那是计算完毕就开始发送出去吗?EMplanner中的Frenet坐标系起点是自车向参考线的匹配点作为坐标系原点。lattice算法中是以参考线的起点作为Frenet坐标系的起点的。原创 2024-10-06 17:07:46 · 579 阅读 · 0 评论 -
自动驾驶-参考线生成
即reference line的计算要根据获取的routing信息(包含路径的lane id,segment id等),检索pnc map(通过KD Tree),得到路径中的路径点,即道路中线的离散点。对于自动驾驶的参考线生成,首先明确的一点是,其为一个实时的过程,是需要不断地根据当前自车的位置,全局路径以及道路信息,获取当前的参考线的。原创 2024-10-03 22:34:46 · 465 阅读 · 0 评论 -
自动驾驶-轨迹拼接
在进行自动驾驶的规划之前,要确定当前帧轨迹规划的起点,这个起点常被误认为是当前车辆的位置,即每次以车辆的当前位置进行轨迹规划;其实不是这样的,直观上,这会导致本次次规划的轨迹同上次规划的轨迹之间是不连续的,这个不连续传递到控制模块,由于轨迹规划出的轨迹对于控制而言就是参考线,那么由于参考线是不连续的,对控制器而言就是朝令夕改。原创 2024-10-03 22:26:32 · 1443 阅读 · 0 评论 -
A*算法学习总结
A*算法是在静态栅格地图中,搜索出一条从起点到终点的,无碰撞的最优路径的路径搜索算法;从open List中选择最小的F的节点,作为处理节点a,先加入close List中,然后,进入步骤3;寻找起点S周围可以到达的方格(最多八个),将它们放入到开启列表”,并设置它们的父方格为S,计算每个周围方格的F值。从起点S开始,把S作为一个等待检查的方格,放入到开启列表”中(开启列表”就是一个存放等待检查方格的列表)从开启列表”中删除起点S,并将S放入到关闭列表”中(“关闭列表”存放的是不再需要检查的方格);原创 2024-10-03 21:45:35 · 538 阅读 · 0 评论 -
Proto文件相关知识
proto文件用法原创 2024-10-03 11:59:46 · 1658 阅读 · 0 评论 -
决策规划概述
决策规划模块的逻辑关系与软件架构,主要学习b站c哥,本博客做一个学习记录提示:这里对文章进行总结。原创 2024-04-01 21:15:14 · 552 阅读 · 0 评论