【30天精通Prometheus:一站式监控实战指南】第20天:dcgm-exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细

亲爱的读者们👋

  欢迎加入【30天精通Prometheus】专栏!📚 在这里,我们将探索Prometheus的强大功能,并将其应用于实际监控中。这个专栏都将为你提供宝贵的实战经验。🚀

  Prometheus是云原生和DevOps的核心监控工具,我们将从基础概念开始,逐步涵盖配置、查询、告警和可视化。💪

  在接下来的30天里,我们将解锁Prometheus的实战技巧,通过案例和分享,助你深入理解其工作原理。📆

  目标:30天后,你将熟练掌握Prometheus,为未来的项目挑战做好准备!💯

  这是一段精彩旅程,期待你的加入!🎉


一、dcgm-exporter概述📘

定义
  dcgm-exporter是一个用于将NVIDIA GPU监控数据导出为Prometheus格式的工具。它能够实时地收集GPU相关的各种指标数据,如温度、功耗、显存使用率等,并将其转换为Prometheus可以理解的格式,以便进行进一步的可视化和告警设置。

功能
  实时数据收集:dcgm-exporter能够实时地收集NVIDIA GPU的各项指标数据,包括但不限于温度、功耗、显存使用率、运算性能等。

  数据格式化:收集到的数据会被格式化为Prometheus所需的格式,这使得数据可以轻松地集成到现有的监控系统中。

  自定义指标:用户可以根据自己的需求,通过CSV文件配置自定义收集的GPU指标,满足特定的监控需求。

  安全性保障:支持TLS加密和基本身份验证,确保监控数据在传输和存储过程中的安全性。

应用场景
  云环境监控:在Kubernetes或OpenStack等云环境中,dcgm-exporter可以帮助运维人员实时监测GPU资源的使用情况,从而实现资源的智能调度和优化配置。

  深度学习训练监控:在进行深度学习训练时,dcgm-exporter可以持续监控GPU的负载、温度和其他关键指标,帮助研究人员预防GPU过热,优化训练效率。

  高性能计算(HPC)环境:对于需要进行大量GPU计算的任务,如气象模拟或物理仿真,dcgm-exporter能够提供实时的性能反馈,有助于及时发现潜在问题、进行故障排查和性能调优。

二、安装dcgm-exporter💾

注意事项和常见问题
  1.环境配置:确保系统已安装NVIDIA GPU驱动和CUDA工具包,因为dcgm-exporter依赖于这些组件来访问GPU信息。检查操作系统是否兼容,并确保满足dcgm-exporter运行的最低要求。

  2.依赖安装:在安装dcgm-exporter之前,需要先安装NVIDIA Data Center GPU Manager (DCGM),因为它是dcgm-exporter的基础。如果计划将dcgm-exporter与Prometheus集成,确保Prometheus服务器已正确配置并运行。

  3.版本兼容性:选择与您的GPU驱动和CUDA版本兼容的dcgm-exporter版本。定期检查并应用官方发布的更新,以确保系统的安全性和性能。

2.1 访问dcgm-exporter官方网站 🌐

2.2 选择适合的版本🔍

  • 在下载页面,你将看到不同操作系统的dcgm-exporter二进制包。根据你的操作系统选择适合的版本。例如,如果你使用的是Linux 64位系统,就选择dcgm-exporter-3.3.5-3.4.1.tar.gz(其中x.x.x是版本号)。

2.3 下载dcgm-exporter⬇️

  • 点击所选版本的下载链接,将dcgm-exporter的二进制包下载到你的本地计算机。

2.4 解压安装包📂

  • 将下载的dcgm-exporter压缩包解压到你想要安装的目录。你可以使用命令行工具(如tar)来完成这个步骤。解压后,你将看到一个名为dcgm-exporter-3.3.5-3.4.1的目录,其中包含dcgm-exporter的二进制文件和其他相关文件。
tar -xzf dcgm-exporter-3.3.5-3.4.1.tar.gz

2.5 安装GO环境

wget https://golang.google.cn/dl/go1.21.1.linux-amd64.tar.gz

tar xvf go1.21.1.linux-amd64.tar.gz -C /usr/local/

mkdir /usr/local/gopath

cat >> /etc/profile <<EOF
export GOROOT=/usr/local/go
export GOPATH=/usr/local/gopath
export PATH=\$PATH:\$GOROOT/bin
export GO111MODULE="on" # 开启 Go moudles 特性
export GOPROXY=https://goproxy.cn,direct # 安装 Go 模块时,国内代理服务器设置
EOF

2.6 运行dcgm-exporter🚀

  • 进入解压后的目录,并运行dcgm-exporter服务器。在Linux下,你可以使用如下命令。如果一切正常,你应该能在终端看到dcgm-exporter的启动日志。
cd dcgm-exporter-3.3.5-3.4.1

make binary

make install


./dcgm-exporter --address 0.0.0.0:9400 -f etc/default-counters.csv

三、dcgm-exporter指标和配置详解📖

  • 黑色:作为默认文本颜色。
  • 绿色:表示常规配置项
  • 橙色:表示具有互斥参数的配置项 / 建议开启(根据自己的场景确定需求)
  • 蓝色:不重要的配置项 / 建议不开启
  • 红色:表示关键信息和警告 / 最好开启

注意:

  • 1.相关参数配置建议仅供参考,具体要以自己生产的实际需要自行配置。
  • 2.以下配置参数介绍是基于dcgm-exporter-3.3.5-3.4.1版本说明的,其它版本会有不同。

3.1 dcgm-exporter.service

  • - -collectors value, -f value
      指定dcgm-exporter需要收集的指标类型。可以通过这个参数来定义他们想要监控和收集哪些特定的NVIDIA GPU指标。例如,可以指定收集GPU利用率、内存使用情况、温度等具体指标。通过传递一个或多个收集器的名称,dcgm-exporter将仅限于导出这些指定收集器的指标。如果不设置此参数,dcgm-exporter会默认收集所有可用的指标
  • - -address value, -a value
      指定dcgm-exporter监听的地址
  • - -collect-interval value, -c value
      定义dcgm-exporter从NVIDIA GPU设备收集指标的频率。它是以秒为单位的时间间隔,指定dcgm-exporter多久查询一次GPU状态并更新其内部指标数据
  • - -kubernetes, -k
      此参数表示dcgm-exporter运行在Kubernetes环境中,并会启用与Kubernetes相关的特性和集成。当在Kubernetes集群中部署dcgm-exporter时,通常会设置此标志
  • - -use-old-namespace, -o
      如果在旧版本的Kubernetes或某些特定配置下运行,并且需要兼容旧的命名空间格式,可以使用此参数
  • - -cpu-devices value, -p value
      通过此参数,可以指定要监控的CPU设备。在多CPU或多核系统的环境中特别有用,可以更精确地监控和收集特定CPU或CPU核心的性能数据
  • - -configmap-data value
      当dcgm-exporter在Kubernetes环境中运行时,用于从ConfigMap中加载配置数据。ConfigMap是Kubernetes中用于存储配置信息的资源对象,通过此参数,dcgm-exporter可以灵活地从ConfigMap中读取配置,无需硬编码或手动设置
  • - -remote-hostengine-info value, -r value
      允许dcgm-exporter从远程主机引擎获取信息。在某些分布式或集群环境中,GPU资源可能分布在多个物理或虚拟节点上,此参数使得dcgm-exporter能够跨节点收集GPU信息
  • - -kubernetes-gpu-id-type value
      GPU可以以不同的方式标识,例如UUID、索引或其他唯一标识符。此参数允许指定Kubernetes中GPU的ID类型,以确保dcgm-exporter能够正确地识别和关联GPU资源
  • - -devices value, -d value
      允许指定要监控的GPU设备。可以提供一个或多个GPU设备的标识符,这样dcgm-exporter就只会收集这些指定设备的指标数据。在多GPU系统中特别有用,当只对某些特定的GPU设备感兴趣时,可以通过此参数进行精确监控
  • - -no-hostname, -n
      设置此参数后,dcgm-exporter在导出指标时将不会包含主机名。默认情况下,dcgm-exporter可能会将主机名作为标签添加到导出的指标中,以便更好地识别和区分不同主机的数据。但在某些场景下,可能希望隐藏或省略主机名信息,此时可以使用此参数
  • - -switch-devices value, -s value
      允许用户指定一个设备切换策略。在某些复杂的系统中,可能存在多个GPU设备,并且这些设备可能在不同的时间或条件下需要被切换或选择。通过设置此参数,用户可以定义如何在这些设备之间进行切换,以满足特定的监控需求
  • - -fake-gpus
      当设置此参数时,dcgm-exporter将模拟GPU设备的存在和指标数据。通常用于测试或开发环境,在没有实际GPU硬件的情况下模拟GPU监控数据的生成和导出。这样开发者可以在没有物理GPU的情况下进行开发和测试
  • - -web-config-file value
      允许用户指定一个Web配置文件,该文件包含dcgm-exporter的Web界面相关配置。通过此配置文件,用户可以自定义Web界面的外观、功能以及行为等。对于需要自定义或扩展dcgm-exporter Web界面来说非常有用
  • - -xid-count-window-size value, -x value
      设置XID错误计数的窗口大小。XID错误是NVIDIA GPU的一种特定错误类型,该参数定义在一个时间窗口内记录和报告的XID错误数量。通过调整这个窗口大小,用户可以更精细地控制对XID错误的监控和报告
  • - -replace-blanks-in-model-name, --rbmn
      当GPU的模型名称中包含空格时,启用此选项将会替换掉这些空格。有助于在处理和报告GPU信息时避免潜在的格式问题或解析错误,确保数据的准确性和一致性
  • - -clock-events-count-window-size value
      用于设置时钟事件计数的窗口大小。时钟事件可能与GPU的时钟频率调整相关,这个窗口大小决定了在一段时间内记录和报告的时钟事件数量,帮助大家更好地理解和分析GPU的时钟行为
  • - -enable-dcgm-log
      启用此参数将开启DCGM的日志记录功能
  • - -dcgm-log-level value
      设置DCGM日志的记录级别。用户可以根据需要选择不同级别的日志详细程度,例如DEBUG、INFO、WARNING、ERROR等。有助于控制日志输出的内容量和详细程度,便于用户根据需要查看和分析日志信息
  • - -pod-resources-kubelet-socket value
      在Kubernetes环境中,此参数用于指定kubelet的Pod资源套接字的路径。dcgm-exporter通过这个套接字与kubelet进行通信,以获取分配给Pod的GPU设备信息
  • - -web-systemd-socket
      当dcgm-exporter作为systemd服务运行时,启用此参数将使其通过systemd的套接字激活功能来提供Web界面。这意味着当外部请求访问dcgm-exporter的Web界面时,systemd会自动启动相应的服务来处理这些请求

四、实战演练:生产环境搭建指南🔨

4.1 创建普通用户管理dcgm-exporter👤

useradd deploy

4.2 解压dcgm-exporter.tar.gz📦

注意:
  我的是x86,所以使用dcgm-exporter-3.3.5-3.4.1.tar.gz,您可以使用uname -a命令查看系统架构

mkdir /home/deploy/dcgm-exporter

tar xvf dcgm-exporter-3.3.5-3.4.1.tar.gz 

cd dcgm-exporter-3.3.5-3.4.1

make binary

make install

cp -a dcgm-exporter /home/deploy/dcgm-exporter/
cp -a etc/default-counters.csv /home/deploy/dcgm-exporter/

4.3 将dcgm-exporter集成到Prometheus配置中✂️

  将dcgm-exporter集成到Prometheus配置中,确保数据能够正常采集。编辑Prometheus的配置文件(通常是prometheus.yml),在scrape_configs部分添加dcgm-exporter的配置。告诉Prometheus将采集dcgm-exporter:9400 的数据。

  - job_name: 'dcgm-exporter'
    static_configs:
      - targets:
      - targets: ["localhost:9400 "]
        labels:
          exporter: dcgm-exporter

4.4 编辑dcgm-exporter.service文件📝

cat > /etc/systemd/system/dcgm-exporter.service <<EOF
[Unit]
Description=Dcgm exporter
After=network.target

[Service]
Type=simple
User=deploy
Group=deploy
ExecStart=/home/deploy/dcgm-exporter/dcgm-exporter \
-f /home/deploy/dcgm-exporter/default-counters.csv \
--address 0.0.0.0:9400
ExecReload=/bin/kill -HUP
Restart=on-failure

[Install]
WantedBy=multi-user.target
EOF

4.5 启动dcgm-exporter.service🔌

sudo systemctl daemon-reload

sudo systemctl enable --now dcgm-exporter.service

4.6 查看服务是否正常启动🔍

# 查看service服务是否启动
sudo systemctl status dcgm-exporter.service

# 查看端口是否存在
sudo ss -ntulp | grep 9400

相关资料下载地址📚

<think>首先,用户的问题是:“我想用户意图是使用dcgm-exporter进行GPU指标监控 请问如何使用dcgm-exporter监控GPU性能指标”。用户提到了引用[1]、[2]、[3],这些是关于Kubernetes中使用NVIDIA DCGM-Exporter监控GPU的引用。用户意图很明确:如何使用dcgm-exporter监控GPU性能指标。 我的回答需要遵循系统级指令: - 所有行内数学表达式用$...$格式。 - 独立公式用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识,例如[^1]。 - 回答结构清晰,帮助用户逐步解决问题。 - 尽量保证回答真实可靠。 参考的引用: - [^1]: 描述了在Kubernetes中使用DCGM-ExporterPrometheus和Grafana设置GPU监控- [^2]: 提供了dcgm-exporter采集的指标,如GPU使用率、显存使用率等。 - [^3]: 讨论了如何通过指标评估GPU是否需要扩容。 用户意图是使用dcgm-exporter监控GPU性能指标,所以我需要提供一个逐步指南,基于这些引用。 回答结构: 1. **介绍**:简要解释dcgm-exporter是什么及其作用。 2. **步骤**:详细说明如何设置和使用dcgm-exporter监控GPU指标。 - 包括安装配置、查看指标等。 - 引用相关部分来支持。 3. **关键指标解释**:解释dcgm-exporter提供的常见指标,如GPU使用率、显存使用率等。 4. **监控工具集成**:提到如何Prometheus和Grafana集成,以可视化监控。 5. **生成相关问题**:在末尾添加相关问题,以帮助用户深入。 生成相关问题: - 基于用户的问题和引用,生成几个相关问题。 - 例如: 1. 如何配置dcgm-exporter在Kubernetes中部署? 2. 如何解读dcgm-exporter提供的GPU指标? 3. 如何基于监控数据优化GPU资源? 确保回答真实可靠:基于提供的引用和一般知识。引用是真实的,所以我可以直接引用它们。 使用中文回答:整个回答用中文书写。 数学表达式:用户的问题是关于GPU监控的,可能不涉及数学公式,但如果需要,我会使用$...$或$$...$$。例如,如果提到百分比或其他简单计算,可以用行内数学格式。但在这个上下文中,可能不需要复杂的数学。 现在,构建回答大纲: 1. **引言**:解释dcgm-exporter并概述步骤。 2. **步骤1:安装和部署dcgm-exporter** - 参考引用[1]和[2]。 3. **步骤2:配置指标采集** - 解释metrics-configmap.yaml中的指标定义,如DCGM_FI_DEV_GPU_UTIL等。 4. **步骤3:集成监控工具** - Prometheus和Grafana集成,参考引用[1]。 5. **步骤4:查看和解读指标** - 解释关键指标,参考引用[2]和[3]。 6. **结论**:总结好处。 7. **相关问题**:添加3-4个相关问题。 在回答中引用段落末尾添加引用标识,例如:[^1] 最终输出格式: - 回答主体。 - §§相关问题§§部分。</think>### 如何使用dcgm-exporter监控GPU性能指标 dcgm-exporter是NVIDIA提供的工具,用于收集和暴露GPU性能指标,支持在Kubernetes或其他环境监控GPU的健康状态、使用率和资源消耗。以下是一个结构清晰的逐步指南,基于真实可靠的实践(参考提供的引用),帮助您快速上手。整个过程包括部署、配置指标采集、集成监控工具和解读指标。 #### 1. **安装和部署dcgm-exporter** dcgm-exporter需要部署在运行NVIDIA GPU的节点上。在Kubernetes环境中,您可以使用Helm或直接应用YAML文件部署。以下是关键步骤: - **前提条件**:确保节点已安装NVIDIA GPU驱动和容器运行时(如Docker或containerd)。 - **部署方法**:使用Helm chart简化安装(推荐),或手动创建Deployment和ConfigMap。 - 示例Helm命令: ```bash helm repo add nvidia https://helm.ngc.nvidia.com/nvidia helm install dcgm-exporter nvidia/dcgm-exporter ``` 这将自动部署dcgm-exporter DaemonSet,确保每个GPU节点都有exporter运行[^1]。 - **验证部署**:运行`kubectl get pods -n <namespace>`检查exporter Pod是否正常运行。 #### 2. **配置指标采集** dcgm-exporter通过ConfigMap定义要采集的GPU指标。您需要自定义metrics-configmap.yaml文件,指定关注的性能指标。参考引用[2],关键指标包括: - **GPU使用率**:`DCGM_FI_DEV_GPU_UTIL`,表示GPU计算单元的利用率百分比(例如,$ \text{利用率} = \frac{\text{实际计算时间}}{\text{采样周期}} \times 100\% $),帮助识别计算瓶颈[^2]。 - **显存使用率**:`DCGM_FI_DEV_MEM_COPY_UTIL`,表示显存带宽利用率百分比。 - **显存用量**:`DCGM_FI_DEV_FB_FREE`(空闲显存,单位MB)和`DCGM_FI_DEV_FB_USED`(已用显存,单位MB),用于监控显存资源。 示例ConfigMap片段: ```yaml # metrics-configmap.yaml apiVersion: v1 kind: ConfigMap metadata: name: dcgm-exporter-config data: metrics: | - name: DCGM_FI_DEV_GPU_UTIL type: gauge help: "GPU utilization (%)" - name: DCGM_FI_DEV_MEM_COPY_UTIL type: gauge help: "Memory utilization (%)" - name: DCGM_FI_DEV_FB_FREE type: gauge help: "Free framebuffer memory (MiB)" - name: DCGM_FI_DEV_FB_USED type: gauge help: "Used framebuffer memory (MiB)" ``` 应用此ConfigMap后,dcgm-exporter将暴露这些指标,供监控系统抓取[^2]。 #### 3. **集成监控工具(Prometheus和Grafana)** dcgm-exporter本身只暴露指标,需Prometheus(数据存储)和Grafana(可视化)集成来实现完整监控- **Prometheus配置**:在Prometheus配置文件中添加dcgm-exporter作为抓取目标。 ```yaml # prometheus.yml scrape_configs: - job_name: 'dcgm-exporter' static_configs: - targets: ['dcgm-exporter-service:9400'] # dcgm-exporter的默认端口 ``` 启动Prometheus后,访问Prometheus UI(如http://localhost:9090)查询指标,例如`DCGM_FI_DEV_GPU_UTIL`[^1]。 - **Grafana可视化**:导入预制的NVIDIA DCGM仪表盘(如ID 12239),或创建自定义面板。例如: - GPU使用率面板:显示实时利用率曲线。 - 显存面板:比较`DCGM_FI_DEV_FB_USED`和`DCGM_FI_DEV_FB_FREE`,识别内存泄漏。 这样,您可以实时监控GPU性能,并设置告警(如利用率超过80%)[^1]。 #### 4. **查看和解读GPU指标** 部署完成后,通过Prometheus或Grafana查看指标。关键指标解读: - **GPU利用率(DCGM_FI_DEV_GPU_UTIL)**:如果持续高于70-80%,表示GPU计算负载高,可能需要优化或扩容[^3]。 - **显存使用率(DCGM_FI_DEV_MEM_COPY_UTIL)**:高值(例如>90%)表示显存带宽瓶颈。 - **显存用量(DCGM_FI_DEV_FB_USED/FREE)**:如果`DCGM_FI_DEV_FB_FREE`持续低于总显存的10%,表明显存不足,需考虑扩容GPU资源[^3]。 综合这些指标,您可以评估GPU的忙碌程度。例如,如果GPU利用率高但显存空闲,可能应用是计算密集型而非内存密集型[^3]。 #### 5. **好处最佳实践** 通过此方案,您可以: - 实时监控GPU健康状态,预防性能瓶颈。 - 优化资源分配,确保GPU高效利用(引用[1]提到“确保GPU资源的最佳利用和性能”)。 - 支持扩容决策:如引用[3]所述,指标持续高负载时,考虑添加更多GPU节点。 如果遇到问题,检查dcgm-exporter日志(`kubectl logs <pod-name>`)或验证NVIDIA驱动兼容性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚喝yBei卡布奇诺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值