👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
一、差分进化算法概述
生物的进化普遍遵循达尔文的“物竞天择、适者生存”的准则,即通过个体之间的选择、交叉和变异来适应自然环境。进化算法就是仿效生物界进化过程的新型优化方法,不依赖与问题的具体特征,具有通用、简单、并行处理等优点,因此被认为是对21世纪的计算机技术有重大影响的关键技术。 差分进化算法提出时间较晚,但其以较强的全局收敛能力、鲁棒性和稳定性迅速成为进化算法领域的研究热点。差分进化算法保留了基于种群的全局搜索策略,采用实数编码、基于差分的简单变异操作和一对一的竞争生存策略,降低了进化操作的复杂性。差分进化算法作为一种高效、简单的并行优化算法,对其进行理论和应用研究具有重要的学术意义。 本文通过对差分进化算法理论基础的研究,针对不同应用问题给出了不同的改进算法。使用差分进化算法解决图像分割问题,并与最大类间方差法作比较分析,试验证明可节省大量时间。在含噪音图像分割问题中,本文使用二次探索改进差分进化算法,提高了算法在进化后期的搜索能力,改善了图像分割的视觉效果。 图像恢复问题是图像处理的重要问题之一。图像恢复问题的主要难点图像信息大,处理速度慢。因此,本文借助差分进化算法的收敛速度快、算法稳定等优点进行图像恢复。在图像恢复过程中算法结合图像特点,随机选取窗口进行交叉和变异操作,取得了较好的结果。
一、引言
差分进化算法是一种新兴的进化计算技术,由Rainer Storn和Kenneth Price等人在1995年提出。它保留了基于种群的全局搜索策略,采用实数编码、基于差分的简单变异操作和一对一的竞争生存策略,降低了遗传操作的复杂性。在图像处理领域,差分进化算法因其强大的全局收敛能力、鲁棒性和稳定性而备受关注。
二、差分进化算法原理
差分进化算法的基本操作包括变异、交叉和选择三种。随机选择两个不同的个体矢量相减生成差分矢量,将差分矢量赋予权值之后加到第三个随机选择的个体矢量上,生成变异矢量,该操作称为变异。变异矢量与目标矢量进行参数混合,生成试验矢量,这一过程称之为交叉。如果试验矢量的适应度优于目标矢量的适应度,则用试验矢量取代目标矢量而形成下一代,该操作称为选择。
三、差分进化算法在图像处理中的应用
-
图像分割
- 图像分割是图像处理中的一项重要任务,其精度直接影响后续的图像处理效果。差分进化算法已被应用于图像分割领域,特别是多阈值图像分割。通过优化阈值选择,差分进化算法可以提高图像分割的精度和效率。例如,将改进后的自适应控制参数差分进化算法(IJADE)和基于反向双变异的差分进化算法(NFDE)应用于Otsu多阈值图像分割技术,可以有效提高图像分割的准确性和收敛速度。
-
图像恢复
- 图像恢复是图像处理中的另一个重要问题,主要难点在于图像信息量大、处理速度慢。差分进化算法因其收敛速度快、算法稳定等优点而被应用于图像恢复领域。通过结合图像特点,在随机选取的窗口内进行交叉和变异操作,差分进化算法可以取得较好的图像恢复效果。
-
图像匹配
- 图像匹配是计算机视觉和图像处理中的一个关键问题。差分进化算法也被用于解决图像匹配问题。实验表明,与传统的灰度关联匹配、SSDA等方法相比,差分进化算法在图像匹配中能够节省大量时间,并提高匹配准确性。此外,将混沌优化方法与差分进化算法相结合,可以进一步提高图像匹配的收敛速度和匹配精度。
四、差分进化算法的改进与优化
为了进一步提高差分进化算法在图像处理中的性能,研究者们对其进行了改进与优化。例如,通过自适应动态调节控制参数、采用动态调整的变异策略等方法,可以提高差分进化算法的收敛速度和稳定性。此外,引入反向学习、双变异策略等改进方法,也可以进一步提高差分进化算法的优化性能。
五、结论与展望
差分进化算法在图像处理领域已经取得了一定的研究成果,特别是在图像分割、图像恢复和图像匹配等方面表现出色。然而,随着图像处理技术的不断发展,对差分进化算法的性能提出了更高的要求。未来,研究者们将继续探索差分进化算法的改进与优化方法,以进一步提高其在图像处理中的性能和应用范围。同时,也将关注差分进化算法与其他先进技术的结合与融合,以推动图像处理技术的不断创新与发展。
综上所述,差分进化算法在图像处理领域具有广阔的应用前景和重要的学术意义。通过不断探索和改进差分进化算法的性能和应用范围,可以为图像处理技术的发展提供新的思路和方法。
📚2 运行结果
部分代码:
generationAtBestFit = [0 0];%stores generation and best fitness
spaceSize = size(searchSpace, 1);
totalPixels = sum(searchSpace);
normProba = searchSpace ./ totalPixels;%normalized probabilities
if thresh < 1 || thresh > spaceSize, disp('Thresholds should be in a range of 1 to 256');return;end
%-----Get an initial Fitness
[fitnessX, X] = OtsuFitness(X, spaceSize, totalPixels, normProba);
[val, fittest] = max(fitnessX);
for gen = 1:generations
%-----Mutation and crossover
for p = 1:population
%don't mutate or crossover the one with best fitness
if fittest == p, U(:, p) = X(:, p);continue;end
%Select three vectors for mutation
randX = linspace(1, population, population);randX(p)=[];
px1 = ceil(rand(1,1)*numel(randX));x1 = randX(px1);randX(px1)=[];
px2 = ceil(rand(1,1)*numel(randX));x2 = randX(px2);randX(px2)=[];
px3 = ceil(rand(1,1)*numel(randX));x3 = randX(px3);
mutant = X(:, x1) + round(vBeta.*(X(:, x2) - X(:, x3)));
%---Crossover (will always happen if threshold is 1)
chk = rand(thresh, 1);
chk(ceil(rand(1) * thresh)) = 0;%one compulsory crossover
bothSame = 0;
if mutant == X(:, p), bothSame = 1; end
for cross = 1:thresh
%if vectors end up being exactly similar, re-generate randomly
if bothSame==1, mutant(cross, 1) = floor(minThresh + (maxThresh - minThresh) * rand(1));continue;end
if chk(cross) <= cr && thresh ~= 1,mutant(cross, 1) = X(cross, p);end
end
%Bring thresholds within range by regeneration instead of clamping
mutant(mutant > maxThresh | mutant < minThresh) = floor(minThresh + (maxThresh - minThresh) * rand(1));
U(:, p) = mutant(:);
end
%-----Selection
[fitnessU, U] = OtsuFitness(U, spaceSize, totalPixels, normProba);
for p = 1:population
if fitnessU(p) > fitnessX(p),
X(:, p) = U(:, p);
fitnessX(p) = fitnessU(p);
end
end
[val, fittest] = max(fitnessX);
tempFitStore = [tempFitStore fitnessX(fittest)];
%=======PSO hybrid attempt (does not work well enough)
%if gen > 5,
% %get three X vectors that are closest in fitness to the best X
% tempX = X; tFitnessX = fitnessX;
% tempX(:,fittest) = []; tFitnessX(fittest) = [];
% [v, f] = max(tFitnessX);x1 = tempX(:, f);fitX1=v;tempX(:,f) = [];tFitnessX(f) = [];
% [v, f] = max(tFitnessX);x2 = tempX(:, f);fitX2=v;tempX(:,f) = [];tFitnessX(f) = [];
% [v, f] = max(tFitnessX);x3 = tempX(:, f);fitX3=v;tempX(:,f) = [];tFitnessX(f) = [];
% [xBest, fitXBest] = exploitWithPSO(X(:,fittest), x1, x2, x3, val, fitX1, fitX2, fitX3, spaceSize, totalPixels, normProba, maxThresh, minThresh);
% if fitXBest > fitnessX(fittest),
% X(:,fittest) = xBest;
% fitnessX(fittest) = fitXBest;
% end
%end
%=====end of PSO
%---Store the generation at which best fitness was achieved
if fitnessX(fittest) > generationAtBestFit(2),
generationAtBestFit(1) = gen;
generationAtBestFit(2) = fitnessX(fittest);
end
if generationAtBestFit(1) > fastestGenerationForBestFitness,
fastestGenerationForBestFitness = generationAtBestFit(1);
end
%fprintf('Image %d is max fit. fitness %f. Achived at gen %d\n', fittest, fitnessX(fittest), generationAtBestFit(1));
if fitnessX(fittest) > bestFitnessAmongTrials,
bestFitnessAmongTrials = fitnessX(fittest);
bestThresholdAmongTrials = X(:,fittest);
end
%---decrease beta to lower exploration and favour exploitation
if vBeta > 1/40, vBeta = vBeta - 1/40;end
%if vBeta > 1/(thresh*4), vBeta = vBeta - 1/(4*thresh);end
end %end of generation loop
runtime = [runtime toc];
if bestFitnessAmongTrials > tempBestFitnessAmongTrials,
tempBestFitnessAmongTrials = bestFitnessAmongTrials;
fitStore = tempFitStore;
end
end %end of trial loop
%---DE completed. Now display data
fprintf('mean: ');
mean(runtime)
fprintf('standard deviation: ');
std(runtime)
fprintf('fastestGenerationForBestFitness=%d\n', fastestGenerationForBestFitness);
fprintf('Best fitness achieved until now=%f with thresholds ', bestFitnessAmongTrials);
disp(bestThresholdAmongTrials');
%-----Display multithresholded images of each vector
figure(figNum);clf;figNum=figNum+1;
T = I;
for j = 1:thresh+1
if j == 1,%first bunch
T(I < bestThresholdAmongTrials(j)) = minThresh-1;%0
else
if j > thresh,%last bunch
T(I >= bestThresholdAmongTrials(j-1)) = maxThresh-1;%255
else%everything else
T(I >= bestThresholdAmongTrials(j-1) & I < bestThresholdAmongTrials(j)) = bestThresholdAmongTrials(j-1);
end
end
end
imshow(T);
title('Best thresholded image');
%-----Display fitness graph
figure(figNum);clf;figNum=figNum+1;
plot(linspace(1, gen, gen), fitStore);
xlabel('Generation');ylabel('Fitness');title('Fitness over time');
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]赵艳丽. 差分进化算法在图像处理中的应用研究[D].中国石油大学,2010.