基于主从博弈的电热综合能源系统动态定价与能量管理(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于主从博弈的电热综合能源系统动态定价与能量管理研究

一、主从博弈模型的理论基础

二、电热综合能源系统的结构与特点

三、动态定价机制的实现与优化

四、能量管理策略的优化方法

五、典型应用案例

六、挑战与未来方向

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


💥1 概述

综合能源系统是由电、热、气、冷多种能源系统耦合而成的,相比于传统能源系统具有更多的能量转换装置和储能设备,其能量流动关系更加复杂,能源的调度分配与能源转换设备特性和能源价格差有很大关系,因此为了更好的对综合能源系统进行协调优化,需要更好的了解各设备的特性,本章介绍了燃气锅炉(Gas Boiler, GB)、余热锅炉(Heat Recovery Boiler, HR)、蒸汽轮机(Steam Turbine, ST)、燃气轮机(GasTurbine, GT)、储能装置等设备的数学模型,并对综合能源需求响应进行概述,为后续工作的开展提供理论基础。

Stackelberg 主从博弈模型中各主体之间的决策过程是有先后顺序的,是一种动态的非合作博弈模型。博弈过程中的领导者率先制定决策,随后参与者根据已知的信息制定策略,因此领导者在博弈过程中具有先动优势。

在主从博弈格局中,当所有博弈主体在一定的条件下,制定的决策使得各主体均达到最优时,则称博弈达到 Stackelberg 均衡,领导者的所有可能策略集记为 X,跟随者的所有可能策略集记为 Y

该模型专注于研究电热综合能源系统的动态定价问题,采用了主从博方法。在领导者问题中,以综合能源系统整体收益为目标函数,考虑了电价和热价等约束。而在跟随者模型中,以用户用能满意度最高为目标函数,构建了领导者-跟随者Stackelberg博弈模型,并考虑了系统的功率平衡和热能平衡条件。该模型的上层求解采用粒子群算法,下层求解采用混合整数规划算法,使用CPLEX作为求解器,也支持替换成gurobi进行求解。

基于主从博弈的电热综合能源系统动态定价与能量管理研究

一、主从博弈模型的理论基础
  1. 定义与分类
    主从博弈(Stackelberg博弈)是一种非合作博弈模型,参与者分为 领导者(Leader) 和 跟随者(Follower)。领导者具有先动优势,优先制定策略(如定价),而跟随者根据领导者的策略调整自身行为(如能源消费量)以实现利益最大化。在电热综合能源系统中,通常将能源运营商或中央控制器作为领导者,用户、分布式能源单元(光伏、储能等)或微电网作为跟随者。

  2. 应用场景

    • 动态定价:运营商通过调整电价和热价引导用户需求响应,同时优化自身收益。
    • 能量调度:多微电网系统中,上层能量管理中心(EMC)制定电价策略,下层微网运营商(MGO)优化能源分配。
    • 多主体协同:在园区能源互联网中,运营商与用户通过博弈优化购能策略和设备运行状态,结合V2G(电动汽车反向送电)和P2G(电转气)技术提升经济性和可再生能源消纳能力。
  3. 均衡解的求解方法

    • 数值优化法:基于KKT条件和对偶定理将双层模型转化为混合整数线性规划问题,利用GUROBI等求解器实现。
    • 启发式算法:采用粒子群算法、差分进化算法处理非凸非线性问题,结合CPLEX等工具提高求解效率。

二、电热综合能源系统的结构与特点
  1. 系统组成
    电热系统由电力网络热力管网和耦合设备构成,包括热电联产机组(CHP)、热泵、电锅炉、储能装置(储氢罐、储热罐)等。例如,含氢储能(HES)的系统可通过电解槽和燃料电池实现电-氢-热多向转换,提升能源利用率。

  2. 核心特征

    • 多能耦合:电能与热能通过CHP机组、热泵等设备相互转换,降低能源梯级损耗。
    • 时空复杂性:热网传输存在延迟和损耗,需结合热力潮流模型优化调度。
    • 需求响应潜力:用户可通过调整用能时段或转换能源类型(如电转热)参与系统调节。

三、动态定价机制的实现与优化
  1. 定价策略设计

    • 分时电价:根据供需变化划分峰谷时段,引导用户错峰用电。例如,在光伏出力高峰时段降低电价以鼓励充电。
    • 实时定价:结合区块链技术公开市场价格,微电网根据实时电价调整购售电计划。
  2. 博弈模型构建

    • 上层目标:运营商以收益最大化为目标,约束条件包括购电成本、设备出力限制等。
    • 下层响应:用户以消费者剩余最大化为目标,调整用能策略(如电动汽车充电时段)。
  3. 风险与挑战

    • 价格波动性:动态定价可能导致电热用户在供暖季面临高电价风险,需通过储能或需求侧管理平滑负荷。
    • 多能源耦合定价:电价与热价的强相关性需通过主从博弈模型协调,避免局部最优解。

四、能量管理策略的优化方法
  1. 储能技术的应用

    • 储热/储电:在低电价时段储能,高峰时段释放,降低运行成本。
    • 氢储能(HES) :通过电解水制氢储存过剩风电,实现跨时段能量调度。
  2. 需求侧管理

    • 柔性负荷调节:利用热泵、电动汽车等可调负荷参与需求响应,平衡供需。
    • 多能互补:结合光伏、风电与燃气锅炉,优化电热比例以降低碳排放。
  3. 分层优化框架

    • 上层全局优化:以系统经济性和低碳性为目标,优化设备出力和能源分配。
    • 下层局部响应:用户根据价格信号调整用能计划,形成双向互动。

五、典型应用案例
  1. 园区能源互联网

    • 运营商与用户通过主从博弈制定动态电价,结合P2G和V2G技术提升风电消纳率,降低用户购能成本15%-20%。
  2. 社区综合能源系统

    • 以运营商为领导者优化零售价格,用户为跟随者调整用能策略,实现系统日利润提升12%,用户满意度提高10%。
  3. 多微电网协同调度

    • 能量管理中心(EMC)与微网运营商(MGO)博弈,通过改进灰狼算法优化电价策略,降低内部电价波动率30%。

六、挑战与未来方向
  1. 技术挑战

    • 模型复杂性:多主体博弈的非线性、非凸性导致求解难度高,需开发高效算法。
    • 数据依赖性:动态定价需依赖精准的负荷预测和可再生能源出力预测。
  2. 创新方向

    • 区块链与博弈结合:提升交易透明度和响应速度,支持多微电网协同。
    • 低碳目标融合:将碳交易成本纳入博弈模型,推动电热系统绿色转型。
    • 用户行为建模:基于心理学分析用户能源替代行为,提升需求响应精度。

结论

主从博弈为电热综合能源系统的动态定价与能量管理提供了理论框架,通过分层优化实现多方利益均衡。未来研究需进一步融合多能源耦合机制、智能算法与政策工具,以应对高比例可再生能源接入和低碳化转型的挑战。

📚2 运行结果

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

可视化代码:

figure(1)
plot(Pload','-x','linewidth',1.8);
hold on
plot(Pload_dr','-.','linewidth',1.8);
axis([0.5,24.5,0,1500]);
xlabel('时刻/h');
ylabel('有功功率/kW');
grid on
legend('园区1电负荷','园区2电负荷','园区3电负荷','园区1需求响应后电负荷','园区2需求响应后电负荷','园区3需求响应后电负荷');
title('园区电负荷');

figure(2)
plot(Hload','-x','linewidth',1.8);
axis([0.5,24.5,0,4000]);
xlabel('时刻/h');
ylabel('热功率/MJ');
grid on
legend('园区2热负荷','园区3热负荷');
title('园区热负荷');

figure(3)
plot(Cload','-x','linewidth',1.8);
axis([0.5,24.5,0,8000]);
xlabel('时刻/h');
ylabel('冷功率/MJ');
grid on
legend('园区3冷负荷');
title('园区冷负荷');

figure(4)
plot(P_pv','-x','linewidth',1.8);
hold on
plot(P_wt','-x','linewidth',1.8);
axis([0.5,24.5,0,1200]);
xlabel('时刻/h');
ylabel('冷功率/MJ');
grid on
legend('园区1光伏','园区1光伏','园区1光伏','风电场出力');
title('园区新能源出力');

figure(5)
F=zeros(3,24);
F(1:3,:)=P_dis;
D=zeros(5,24);
D(1,:)=-P_chwind;
D(2,:)=-P_chgrid;
D(3:5,:)=-P_ch;
c=bar(-D(:,:)','stack');
Color1 = [0.1 0.8 0.2];
Color2 = [0.5 0.1 0.2];
Color3 = [0.6 0.1 0.7];
Color4 = [0.4 0.4 0.5];
Color5 = [0.9 0.6 0.2];
set(c(1), 'FaceColor', Color1);
set(c(2), 'FaceColor', Color2);
set(c(3), 'FaceColor', Color3);
set(c(4), 'FaceColor', Color4);
set(c(5), 'FaceColor', Color5);
hold on
b=bar(-F(:,:)','stack');
color1 = [0.8 0.1 0.1];
color2 = [0.1 0.5 0.5];
color3 = [1 0.6 0.5];
set(b(1), 'FaceColor', color1);
set(b(2), 'FaceColor', color2);
set(b(3), 'FaceColor', color3);
ax = gca;
ax.YColor = 'k';
axis([1,24,-4500,5000]);
xlabel('时刻/h');
ylabel('有功功率/MW'); % 给左y轴添加轴标签
yyaxis right; % 激活右边的轴
hold on
plot(E_ess(:)/3000,'g-^','linewidth',2);
ax = gca;
ax.YColor = 'k';
axis([0.5,24.5,0,1]);
ylabel('储能SOC'); % 给右y轴添加轴标签
legend('储能从风电场充电','储能从配电网充电','储能向园区1充电','储能向园区2充电','储能向园区3充电','储能向园区1放电','储能向园区2放电','储能向园区3放电','储能SOC');
grid on
title('储能电站电功率平衡');

figure(6)
wind=zeros(5,24);
wind(1:3,:)=P_wind;
wind(4,:)=P_chwind;
wind(5,:)=P_windgrid;
w=bar(-wind(:,:)','stack');
color1 = [0.8 0.1 0.1];
color2 = [0.1 0.5 0.5];
color3 = [1 0.6 0.5];
set(w(1), 'FaceColor', color1);
set(w(2), 'FaceColor', color2);
set(w(3), 'FaceColor', color3);
hold on
bar(P_wt);
axis([0.5,24.5,-1500,1500]);
xlabel('时刻/h');
ylabel('有功功率/MW'); % 给左y轴添加轴标签
legend('风场向园区1售电','风场向园区2售电','风场向园区3售电','风场向储能售电','风场向配电网售电','风场出力');
grid on
title('风电场电功率平衡');

figure(7)
grid1=zeros(3,24);
grid2=zeros(3,24);
grid1=P_buy;
grid2=P_sell;
w=bar(grid1(:,:)','stack');
color1 = [0.8 0.1 0.1];
color2 = [0.1 0.5 0.5];
color3 = [1 0.6 0.5];
set(w(1), 'FaceColor', color1);
set(w(2), 'FaceColor', color2);
set(w(3), 'FaceColor', color3);
hold on
ww=bar(-grid2','stack');
axis([0.5,24.5,-3000,3000]);
xlabel('时刻/h');
ylabel('有功功率/MW'); % 给左y轴添加轴标签
legend('配电网向园区1售电','配电网向园区2售电','配电网向园区3售电','配电网从园区1购电','配电网从园区2购电','配电网从园区3购电');
grid on
title('配电网与园区交换功率');

figure(8)
park1=zeros(10,24);
park1(1,:)=P_buy(1,:);
park1(2,:)=P_dis(1,:);
park1(3,:)=P_wind(1,:);
park1(4,:)=sum(P_pv);
park1(5,:)=P_21;
park1(6,:)=P_31;
park1(7,:)=-P_12;
park1(8,:)=-P_13;
park1(9,:)=-P_ch(1,:);
park1(10,:)=-P_sell(1,:);
p1=bar(park1(1:6,:)','stack');
color1 = [0.8 0.1 0.1];
color2 = [0.1 0.5 0.5];
color3 = [1 0.6 0.5];
set(p1(1), 'FaceColor', color1);
set(p1(2), 'FaceColor', color2);
set(p1(3), 'FaceColor', color3);
hold on
bar(park1(7:10,:)','stack');
hold on
plot(Pload_dr(1,:),'g-^','linewidth',2);
axis([0.5,24.5,-2000,2000]);
xlabel('时刻/h');
ylabel('有功功率/MW'); % 给左y轴添加轴标签
legend('园区1从配电网购电','储能电站向园区1放电','风场向园区1售电','光伏出力','园区2向园区1售电','园区3向园区1售电','园区1向园区2售电','园区1向园区3售电','储能电站从园区1充电','园区1向配电网售电','园区1响应后电负荷');
grid on
title('园区1电功率平衡');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]林泓键.基于主从博弈的电热综合能源系统优化运行[J].青海电力, 2023, 42(2):31-36.

[2]赵帅.基于Stackelberg主从博弈的综合能源系统优化调度研究[J].[2024-01-01].

🌈4 Matlab代码、数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值