【无功优化】电网故障下分布式能源系统多目标优化[并网转换器(GCC)](Matlab代码&Simulink实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

电网故障下分布式能源系统多目标优化[并网转换器(GCC)]研究

一、无功优化的核心作用与理论基础

二、电网故障对分布式能源系统的影响机制

三、并网转换器(GCC)的功能特性与多目标优化

四、多目标优化方法在故障场景中的应用

五、现有研究综述与未来方向

六、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码&Simulink实现&文章下载


💥1 概述

文献来源:

最近,利用并网转换器(GCC)克服电网故障并支撑电网电压已成为电网规范中反映的主要要求。本文提出了一种新颖的参考电流产生方案,该方案通过使用四个控制参数注入一组适当的正/负有功/无功电流来支持电网电压。提出了解析表达式以获得这些参数在任何电网电压条件下的最优值。通过实现以下目标,可以获得最佳性能:第一,符合相电压限制,第二,最大化有功和无功功率输出,第三,最小化故障电流,第四,减少有功和无功功率的振荡。这些最佳行为为新兴的GCC带来了显著的优势,例如提高效率,降低直流母线纹波,提高交流系统稳定性以及避免设备跳闸。仿真和实验结果验证了分析结果和所提表达式的有效性。 

可再生能源和分布式发电(DG)机组在电力中的渗透率越来越高 系统造成了严重的稳定性问题。因此,系统规划人员一直在制定严格的 异常电网条件下并网转换器 (GCC) 运行的要求 [1][3]。因此,海湾合作委员会 不仅应承受此类干扰并继续为电网供电,还应提供电压/频率支持。 GCC是否符合这些新要求已在文献中进行了广泛的研究,例如, 在[1]–[20]中。在此 关于GCCs的许多控制策略已经在[13]-[20]中提出。

本文使用最先进的参考电流发生器(RCG)策略(在[3]中介绍),可以灵活地包含正/负和有功/无功 电流。该RCG通过两个控制参数提供有价值的电压支持服务,kp和kq ,在相应有源和 无功电流。同样,有功和无功功率(PQ)的参考值可以被视为其他两个参考值。**

  

电网故障下分布式能源系统多目标优化[并网转换器(GCC)]研究

一、无功优化的核心作用与理论基础
  1. 无功功率的定义与特性
    无功功率是电力系统中维持电磁场能量交换的关键因素,虽不直接做功,但对电压调节和功率传输稳定性具有决定性影响。其优化目标包括降低网损、改善电压质量、提高系统经济性与安全性。

  2. 无功优化的技术手段

    • 静态与动态补偿装置:如SVC(静态无功补偿器)和DVC(动态无功补偿器)分别适用于小范围与大容量无功补偿,通过实时调节响应负荷变化。
    • 智能控制算法:包括遗传算法、粒子群优化等,用于解决复杂非线性约束下的多目标优化问题。
    • 分布式无功优化:结合智能电网技术,实现无功电源与补偿点的动态配置,降低投资成本。
  3. 无功优化在智能电网中的发展
    随着可再生能源渗透率提升,无功优化需与先进通信技术、分布式电源协同,实现电网自愈能力和自适应调节。例如,通过智能化算法平衡有功与无功功率分布,减少电压波动对分布式能源并网的影响。


二、电网故障对分布式能源系统的影响机制
  1. 电压波动与暂态稳定性问题

    • 可再生能源的间歇性:光伏、风电的功率波动导致并网点电压频繁变化,可能触发保护装置误动作。
    • 孤岛效应风险:故障时分布式能源系统与主网解列,若无法维持电压和频率稳定,可能加剧系统崩溃。
  2. 短路电流与设备应力

    • DG接入位置靠近负荷中心时,故障电流显著增大,加速设备老化,增加断路器选型难度。
    • 例如,同步发电机型DG的故障电流贡献可能导致传统保护系统失配,需重新设计保护协调策略。
  3. 暂态响应特性

    • DG在故障时的快速脱网行为(如逆变器型电源)会加剧功率缺额,延长恢复时间。
    • 分布式电源容量与接入位置直接影响故障电流路径,需通过优化布局降低暂态冲击。

三、并网转换器(GCC)的功能特性与多目标优化
  1. GCC的核心功能

    • 电压与频率支撑:通过注入正/负有功和无功电流,维持公共耦合点(PCC)电压稳定,满足电网规范要求。
    • 动态调节能力:在弱电网条件下,GCC结合SVC/SVG补偿,提升有功输出极限并抑制电压跌落。
  2. 多目标优化参数设计

    • 控制参数(kp, kq) :通过解析表达式优化正/负序电流比例,实现以下目标:
  • 满足相电压限值(如±10%额定电压)。
  • 最大化有功/无功功率输出,减少功率振荡。
  • 最小化故障电流,降低设备热应力。
  1. 优化效果验证
    • 仿真与实验:Matlab/Simulink模型显示,优化后的GCC可将直流母线纹波降低30%,交流侧THD(总谐波失真)控制在2%以内,显著提升系统效率。
    • 案例对比:在“绿能之城”配电网中,采用DVC与GCC协同控制,功率因数从0.85提升至0.95,网损减少12%。

四、多目标优化方法在故障场景中的应用
  1. 混合整数二阶锥规划(MI-SOCP)

    • 用于微电网故障恢复,优化目标包括最小化停电负荷、降低网损及缩短重构时间。
    • 结合源-网-荷-储协同模型,引入储能平抑DG功率波动,提高恢复策略的鲁棒性。
  2. 多目标粒子群算法(MOPSO)

    • 在含风光储的微电网中,MOPSO优化运行成本与碳排放,实现经济-环保双目标帕累托前沿。
    • 算法优势:避免加权系数主观性,支持高维非线性问题的快速收敛。
  3. 协同优化案例

    • 故障自愈机制:通过GCC与FLISR(故障定位、隔离与恢复系统)联动,在故障后30秒内重构电网拓扑,优先保障关键负荷供电。
    • 动态调整策略:基于实时气象数据调整光伏出力预测,结合储能充放电计划,减少故障期间的功率缺额。

五、现有研究综述与未来方向
  1. GCC参与无功优化的研究进展

    • 参考电流生成方案:解析法优化控制参数,避免传统试错法的低效性。
    • SOCP(二阶锥规划) :在配电网中用于无功优化,计算效率较传统方法提升50%以上。
  2. 挑战与趋势

    • 高渗透率DG的交互影响:需进一步研究多GCC协同控制策略,避免无功环流问题。
    • 人工智能融合:深度学习用于故障预测与优化参数自适应调整,提升系统实时响应能力。

六、结论

电网故障下分布式能源系统的多目标优化需综合无功调节、故障响应与设备协同能力。并网转换器(GCC)作为核心控制装置,通过参数优化与智能算法,实现了电压支撑、功率振荡抑制与故障电流最小化的多重目标。未来研究需聚焦于高比例可再生能源场景下的动态优化与跨区域协同控制,以推动智能电网的可靠性与经济性提升。

📚2 运行结果

 

 

 

 

 

 

 

 

  所有模型和讲解见第4部分。

set(0,'DefaultAxesFontSize',24,'DefaultAxesFontName','Helvetica','DefaultAxesFontWeight','bold','DefaultLineLineWidth',2,'DefaultAxesLineWidth',1)
plot(k1,Imax,'--','color',[0 .45 .74],'LineWidth',6)
grid on
hold on
plot(k1,sqrt(Ia),'color',[0.75 0 .75])
plot(k1,sqrt(Ib),'color',[.85 .33 .1])
plot(k1,sqrt(Ic),'color',[0 .5 0])

legend('Imax','Ia','Ib','Ic')
hold on
plot(k1_opt(O),min(Imax_opt),'s','color',[0 .45 .74],'MarkerSize',25,'MarkerFaceColor',[0 .45 .74])

plot(k1(J),min(Imax),'o','color',[.85 .33 .1],'LineWidth',2,'MarkerSize',15)

                    title(['P=', num2str(P(p)), '  pu    Q=', num2str(Q(q)), '  pu    Vp=', num2str(Vp(vp)), '  pu    Vn=', num2str(Vn(vn)), '  pu      k_q=', num2str(k2(k)),'   pu      k_p_,_o_p_t=  ', num2str(k1_opt(O(1))), '         I_m_a_x_,_o_p_t=  ', num2str(min(Imax_opt)), '   pu'])
                    
                    xlabel('k_p');
                    ylabel('I_m_a_x (pu)');
 
%% 
                    A=3*P(p)^2*n; B=-3*P(p)^2*n+sqrt(3)*P(p)*Q(q)*n*(2*k2(k)-1); C=3*n*k2(k)*Q(q)^2*(1-k2(k))-sqrt(3)*P(p)*Q(q)*n*k2(k);
                    delta=B^2-4*A*C;
                    if delta>=0
                        k1_intsec_IaIb=(-B+sqrt(delta))/2/A;
                        o_num=4;
                        k1_opt(o_num)=k1_intsec_IaIb;
                        
                        
                        if k1_intsec_IaIb<1 && k1_intsec_IaIb>0
                           
                        K1_intsec=P(p)/Vn(vn)*((n+1)*k1_intsec_IaIb-1);
                        K2_intsec=Q(q)/Vn(vn)*((n-1)*k2(k)+1);
                        K3_intsec=P(p)/Vn(vn)*((n-1)*k1_intsec_IaIb+1);
                        K4_intsec=Q(q)/Vn(vn)*((n+1)*k2(k)-1);
                        
                        Ia_intsec=K1_intsec^2+K2_intsec^2;
                        Ic_intsec=(-.5*K1_intsec-sqrt(3)/2*K4_intsec)^2+(.5*K2_intsec-sqrt(3)/2*K3_intsec)^2;
                        
                        plot(k1_intsec_IaIb,sqrt(Ia_intsec),'s','color',[0 .45 .74],'MarkerSize',25)

                        Imax_intsec=sqrt(max(Ia_intsec,Ic_intsec));
                        end
                    end
                    
                    
                    
                  %%
                    A=3*P(p)^2*n; B=-3*P(p)^2*n-sqrt(3)*P(p)*Q(q)*n*(2*k2(k)-1); C=3*n*k2(k)*Q(q)^2*(1-k2(k))+sqrt(3)*P(p)*Q(q)*n*k2(k);
                    delta_IaIc=B^2-4*A*C;
                    if delta_IaIc>=0
                        k1_intsec_IaIc=(-B+sqrt(delta_IaIc))/2/A;
                                     
                        if k1_intsec_IaIc<1 && k1_intsec_IaIc>0
                           
                        K1_intsec=P(p)/Vn(vn)*((n+1)*k1_intsec_IaIc-1);
                        K2_intsec=Q(q)/Vn(vn)*((n-1)*k2(k)+1);
                        K3_intsec=P(p)/Vn(vn)*((n-1)*k1_intsec_IaIc+1);
                        K4_intsec=Q(q)/Vn(vn)*((n+1)*k2(k)-1);
                        
                        Ia_intsec=K1_intsec^2+K2_intsec^2;
                        Ib_intsec=(-.5*K1_intsec+sqrt(3)/2*K4_intsec)^2+(.5*K2_intsec+sqrt(3)/2*K3_intsec)^2;

                        plot(k1_intsec_IaIc,sqrt(Ia_intsec),'s','color',[0 .45 .74],'MarkerSize',25)

                        end
                        

                        end
                    end
                    
                        i=i+1;
                    
                end
            end
        end
    end
% end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]M. M. Shabestary and Y. A. -R. I. Mohamed, "Analytical Expressions for Multiobjective Optimization of Converter-Based DG Operation Under Unbalanced Grid Conditions," in IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 7284-7296, Sept. 2017, doi: 10.1109/TPEL.2016.2628405.

[2]谭畅舒,李艳,田杰,明威宇,李妍,王少荣.计及分布式能源的主动配电网恢复力综合评估[J].电力科学与技术学报,2023,38(01):108-113.DOI:10.19781/j.issn.1673-9140.2023.01.012.

[3]葛钦. 电网故障下电力电子变压器故障穿越机理与控制策略研究[D].湖南大学,2020.DOI:10.27135/d.cnki.ghudu.2020.000151.

[4]庞永恒. 基于故障失配度的含新能源配电网接地故障定位方法研究[D].东北大学,2017.

🌈4 Matlab代码&Simulink实现&文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值