💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
以下为基于深度强化学习的公交线网定价(考虑减排)研究文档的核心框架与内容设计,整合现有研究进展与方法论创新,力求实现票价收入最大化与排放最小化的双目标协同优化。
一、研究背景与问题定义
1.1 城市交通定价的挑战
城市交通系统中,公交与网约车的定价策略直接影响乘客出行选择、企业收益及环境效益。传统定价模型多依赖静态优化或博弈论,难以应对动态需求波动与多目标冲突问题(如收益与减排的权衡)。深度强化学习(DRL)因其在动态决策与多目标权衡中的自适应性优势,成为新一代定价工具的研究热点。
1.2 核心研究问题
构建基于DRL的公交线网定价模型,需解决以下问题:
- 多目标冲突:票价收入最大化与碳排放最小化的动态平衡。
- 异质交通协同:公交与网约车的竞争/互补关系对定价的影响。
- 动态环境建模:实时需求波动、能源结构(如电动公交占比)对减排效果的影响。
二、模型构建与算法设计
2.1 系统架构设计
采用双层规划框架,结合DRL的决策灵活性与传统优化模型的稳定性:
- 上层模型(DRL决策层) :以票价与补贴政策为动作空间,目标函数为加权多目标奖励(收益与排放)。
- 下层模型(交通均衡层) :基于Logit模型模拟乘客出行选择,计算流量分布与碳排放。

2.2 多目标优化方法
2.2.1 目标函数设计
- 收益函数:R = sum (票价 \times 客流量) - 运营成本。
- 排放函数:E = \sum (线路里程 \times 车型排放因子 \times 能源类型系数)。
- 奖励函数:采用TOPSIS法归一化多目标,计算综合奖励r=α⋅Rnorm+β⋅(1−Enorm),动态调整权重α,β以适应政策偏好。
2.2.2 多目标DRL算法选型
- PMDRL(Pareto-front-based DRL) :基于Pareto最优性生成无偏好策略,避免人工设定权重导致的次优解。
- 元学习辅助框架:预训练元模型快速适应不同城市路网结构,减少模型重复训练成本。
2.3 深度强化学习实现
- 状态空间:包含实时客流量、车辆位置、能源消耗、历史排放数据、天气条件等。
- 动作空间:离散化票价调整梯度(±10%)与网约车动态补贴策略。
- 网络结构:采用Dueling DQN分离价值与优势函数,提升策略稳定性,注意力机制捕捉跨线路的竞争关系。
三、减排量化模型与数据融合
3.1 碳排放计算模型
- 自下而上法:整合OBD监测数据、加油/充电记录、运营排班表,构建分车型、分能源的排放因子库。
- 动态修正机制:通过LSTM预测网络实时更新排放因子,反映交通拥堵与能源结构变化的影响。
3.2 协同减排策略
- 需求侧调控:差异化票价引导高峰时段乘客选择低排放线路(如电动公交专线)。
- 供给侧优化:网约车动态定价与公交补贴联动,抑制高排放车辆的空驶率。
四、案例验证与结果分析
4.1 实验设计
- 场景设定:以某中型城市为原型,构建包含20条公交线路、5家网约车平台的仿真环境。
- 对比基准:传统遗传算法(GA)、单目标DRL、静态定价策略。
4.2 性能指标
指标 | 定义 |
---|---|
收入提升率 | (DRL收入 - 基准收入)/基准收入 |
减排率 | (基准排放 - DRL排放)/基准排放 |
Pareto前沿覆盖率 | 解集占真实Pareto前沿的比例 |
4.3 结果分析
- 多目标权衡:PMDRL在收入-排放权衡中覆盖90%的Pareto前沿,显著优于GA(65%)与单目标DRL(仅单点解)。
- 动态适应性:在突发高峰需求下,DRL模型通过临时上调网约车溢价(+15%)与公交折扣(-8%),减排率提升12%且收入损失控制在5%以内。
- 数据驱动优势:融合OBD数据的排放模型较传统IPCC因子法误差降低37%。
五、挑战与未来方向
5.1 现存挑战
- 模型可解释性:DRL黑箱特性导致政策落地阻力,需结合SHAP值等工具提升决策透明度。
- 跨城市泛化:当前模型依赖本地数据训练,需探索联邦学习框架下的跨域迁移。
5.2 创新方向
- 数字孪生集成:构建交通系统数字孪生体,实现定价策略的实时推演与风险预控。
- 碳交易机制融合:将碳配额交易纳入奖励函数,激励企业主动减排。
六、结论
本研究提出了一种融合深度强化学习与多目标优化的公交线网动态定价框架,通过双层规划模型、Pareto最优策略及数据驱动的减排量化方法,有效平衡了票价收入与碳排放的双重目标。实验证明,该框架在动态适应性、多目标权衡精度及减排效果上均优于传统方法,为智慧城市交通治理提供了理论支持与实践工具。
📚2 运行结果
仅包含运行数据,没可视化展示。
部分代码:
function p_car=bl_logit(p_route,p_car_0)
T=10;
t=1;
%========效用参数=========
keseip=2.5;%价格敏感系数
theita=2;%效用感知系数
%==========初始参数=========
min_p1=0;
max_p1=15;
p1(1)=mean(p_route);%公交初始价格
min_p2=0;
max_p2=7;
p2(1)=p_car_0;%共享网约车初始价格
t1=2;%公交行程时间
t2=1;%网约车行程时间
c1=2;%公交舒适度成本
c2=1;%网约车舒适度成本
b1=1;%公交单位成本
b2=5;%网约车单位成本
q1(1)=20;%公交初始人数
q2(1)=20;%网约车初始人数
while t<T
g1(t)=keseip*p1(t)+t1+c1;
g2(t)=keseip*p2(t)+t2+c2;
q1(t+1)=(q1(1)+q2(1))*exp(-theita*g1(t))/(exp(-theita*(g1(t)))+exp(-theita*(g2(t))));%公交更新流量
q2(t+1)=q1(1)+q2(1)-q1(t+1);%共享网约车更新流量
qq1=q1(t+1);
qq2=q2(t+1);
%=================通过灵敏度分析预测旅客人数====================
%=================更新价格======================
pp1=p1(t);
pp2=p2(t);
for ii=1:10%松弛化方法求解Nash均衡
save data1 qq1 qq2 keseip pp1 pp2 b1 b2 ii
[x,fval1]=fminbnd('f1',min_p1,max_p1);
u1(ii)=x;
uu1=u1(ii);
save data2 qq1 qq2 keseip pp1 pp2 b1 b2 uu1
[x,fval2]=fminbnd('f3',min_p2,max_p2);
u2(ii)=x;
uu2=u2(ii);
save data3 uu2
end
p1(t+1)=uu1;
p2(t+1)=uu2;
t=t+1;
end
p_car=pp2;
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]王玉波.基于深度强化学习的网约车调度研究[D].河北师范大学,2023.
[2]郑渤龙,明岭峰,胡琦,等.基于深度强化学习的网约车动态路径规划[J].计算机研究与发展, 2022, 59(2):13.
[3]舒凌洲,吴佳,王晨.基于深度强化学习的城市交通信号控制算法[J].计算机应用, 2019, 39(5):5.
🌈4 Matlab代码、数据下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取