一、基本思路
1、概念定义
-
拓扑序列定义:
-
- 若一个由图中所有点构成的序列 A满足:对于图中的每条边 (x,y),x在 A中都出现在 y之前,则称 A是该图的一个拓扑序列。
-
- 人话:始终满足每条边的起点在终点前面,从前指向后。
-
注意:如果在有向图中构成一个环,则必定无法构成拓扑结构,也可以证明有向无环图一定存在拓扑序列,即有向无环图=拓扑图
-
入度:对一个节点而言,有多少条边指向自己。
-
出度:对一个节点而言,有多少条边指向外面。
二、拓扑序列模板
-
- 因为拓扑序列都是从前指向后面的,因此当前入度为0的点都可以当做是起点。
-
- 入度为0,意味着没有任何一个点在我面前,可以放在最前面的位置。
-
- 每次遍历完之后,就可以让 入度-1,表示前面指向他的确定了一个,直到为0 ,就可以加入序列,这就代表着后面再也没有指向这个节点的了。
// 伪代码
queue <--- 所有入度为0的点
while(queue 不空){
t = 队头;
枚举t的所有出边(t ---> j){
j = e[i];
删掉t ---> j这条边,即入度 d[j]--;
if (d[j] == 0){ // 此时 j 的入度为了 0 ,则可以放在最前面去了
queue <--- j; // 入队
}
}
}
拓扑排序 —— 模板题 AcWing 848. 有向图的拓扑序列
时间复杂度 O(n+m) n 表示点数,m 表示边数
bool topsort()
{
int hh = 0, tt = -1;
// d[i] 存储点i的入度
for (int i = 1; i <= n; i ++ )
if (!d[i])
q[ ++ tt] = i;
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (-- d[j] == 0)
q[ ++ tt] = j;
}
}
// 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
return tt == n - 1;
}
- 若存在环,则找不到一个入度为 0 的点,没有突破口,无法入队。一个无环图,一定存在一个入度为0的点。
三、例题题解
// java题解实现
import java.util.*;
public class Main{
static int N = 100010;
static int[] e = new int[N];
static int[] ne = new int[N];
static int[] h = new int[N];
static int idx = 0;
static int hh = 0;
static int tt = -1;
static int[] q = new int[N];
static int[] d = new int[N]; // 表示入度大小,为了后面进行入度逐渐减小做准备
static int n,m;
static void add(int a, int b){
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
static boolean topsort(){
for(int i = 1; i <= n; i++){ // 首先将入度为0的节点加入队列中
if(d[i] == 0){
q[++tt] = i;
}
}
while(hh <= tt){
int temp = q[hh++]; // 此处仅仅是对所控制的队列进行了首节点后移
for(int i = h[temp]; i != -1; i = ne[i]){
int j = e[i]; // 遍历当前队列节点能到达的节点
d[j] --; // 有点指向,那必然不为0,遍历过去之后,就可以排除这个点指向了
if(d[j] == 0){ // 如果入度后面为0了,说明没有点指向他了
q[++tt] = j; // 入度为0了,后面的遍历没有指向他的了,所以可以加入队列了
}
}
}
return tt == n - 1; // 判断是不是队列已经将n个节点存在q中了,因为q从0开始存储的
}
public static void main(String[] args){
Scanner in = new Scanner(System.in);
n = in.nextInt();
m = in.nextInt();
for(int i = 0; i < N; i++){
h[i] = -1;
d[i] = 0;
}
for(int i = 0; i < m; i++){
int a = in.nextInt();
int b = in.nextInt();
add(a, b);
d[b]++; // 有节点指向 b故此需要进行入度+1
}
if(topsort()){
for(int i = 0; i < n; i++){
System.out.print(q[i] + " "); // 尽管其中的hh指针已经移到后面,但是队列中始终存储着序列
}
}else{
System.out.println("-1");
}
}
}