Task01 了解逻辑回归理论--阿里云天池

逻辑回归简单介绍:

逻辑回归的名字中虽然带有回归两个字,不过这是一个并不是一个回归算法,而是一个分类算法,他是在线性回归的基础上加入了sigmoid函数,将线性回归的结果输入至sigmoid函数中,并且设定一个阈值,如果大于阈值为1,小于阈值为0.而对于逻辑回归而且,最为突出的两点就是其模型简单模型的可解释性强

逻辑回归模型的优劣势:

  • 优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
  • 缺点:容易欠拟合,分类精度可能不高

逻辑回归推到过程:

准备公式: 
sigmoid函数 : 这里写图片描述 
预测函数 : 这里写图片描述 
用概率的形式表示时间是否发生: 
在样本 x 的条件下 y = 1 的概率 : 这里写图片描述 
在样本 x 的条件下 y = 0 的概率 : 这里写图片描述 
上面两个公式合并: 这里写图片描述

通过最大似然函数求损失函数 
这里写图片描述 
这里写图片描述 
这里在x 和 y 上的上标标忘了打了,用来表示第i个数据

损失函数 : 这里写图片描述


在这里我们发现损失函数是一个恒正的函数,所以我们使用梯度上升算法,这个和梯度下降算法并没有什么区别 
梯度上升迭代函数 : 这里写图片描述 
偏导函数,为了推导方便,暂时省略求和计算 
偏导公式进行链式分解: 这里写图片描述 
这里写图片描述 
这里写图片描述 
这里写图片描述 
上面三式综上:这里写图片描述


综上可以得 
这里写图片描述


@慕运维8079593      https://www.imooc.com/article/69668

 

算法实战:

# 基础函数库
import numpy as np

# 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns

# 导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression

# Demo演示LogisticRegression分类

# 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])  # 表示颜色的RGBA二位数组

# 调用逻辑回归模型
lr_clf = LogisticRegression()

# 用逻辑回归模型拟合构造的数据集
lr_clf = lr_clf.fit(x_fearures, y_label)  # 其拟合方程为 y=w0+w1*x1+w2*x2

# 查看其对应模型的w
print('the weight of Logistic Regression:', lr_clf.coef_)

# 查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:', lr_clf.intercept_)

# 可视化结构的数据的样本点
plt.figure()
plt.scatter(x_fearures[:, 0], x_fearures[:, 1], c=y_label, s=50, cmap='viridis')  # C表示颜色,可以用RGB数字或者RGBA二维数组表示
# x_fearures[:, 0]表示所有维数的的第o个数字
plt.title('Ddtataset')
#plt.show()
# 可视化决策边界
nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))

z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])
z_proba = z_proba[:, 1].reshape(x_grid.shape)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()
# 可视化预测新样本

plt.figure()

# new point 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:, 0], x_fearures_new1[:, 1], s=50, cmap='viridis')
plt.annotate(s='New point 1', xy=(0, -1), xytext=(-2, 0), color='blue',
             arrowprops=dict(arrowstyle='-|>', connectionstyle='arc3', color='red'))

# new point 2
x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:, 0], x_fearures_new2[:, 1], s=50, cmap='viridis')
plt.annotate(s='New point 2', xy=(1, 2), xytext=(-1.5, 2.5), color='red',
             arrowprops=dict(arrowstyle='-|>', connectionstyle='arc3', color='red'))

# 训练样本
plt.scatter(x_fearures[:, 0], x_fearures[:, 1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

# 在训练集和测试集上分布利用训练好的模型进行预测
y_label_new1_predict = lr_clf.predict(x_fearures_new1)
y_label_new2_predict = lr_clf.predict(x_fearures_new2)

print('The New point 1 predict class:\n', y_label_new1_predict)
print('The New point 2 predict class:\n', y_label_new2_predict)

#  由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率
y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2)

print('The New point 1 predict Probability of each class:\n', y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n', y_label_new2_predict_proba)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这是小刘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值