计算机算法基础-贝祖公式(基于欧几里得算法)

写在前面

贝祖公式的推导是建立在欧几里得算法的基础之上的,关于欧几里得算法的推导可以看我之前发的这个帖子:这里

为什么需要证明贝祖公式

对于互质的性质:若 整数 a 与 b 互质, 则存在 整数 x, y, 使得 xa + yb = 1 (贝祖公式)

公式内容

两个数的最大公约数,可以用两个数的整数倍相加获得,即
∀ a , b ∈ Z , g c d ( a , b ) = m , 则 ∃ x , y ∈ Z , 使 得 a ∗ x + b ∗ y = m \forall a,b\in Z,gcd(a,b)=m,则\exists x,y\in Z, 使得 a*x + b*y = m a,bZ,gcd(a,b)=mx,yZ,使ax+by=m

证明

要证: ∀ a , b ∈ Z , g c d ( a , b ) = m , 则 ∃ x , y ∈ Z , 使 得 a ∗ x + b ∗ y = m \forall a,b\in Z,gcd(a,b)=m,则\exists x,y\in Z, 使得 a*x + b*y = m a,bZ,gcd(a,b)=mx,yZ,使ax+by=m
即证: 关 于 x , y 的 方 程 : k 1 ∗ x + k 2 ∗ y = g c d ( k 1 , k 2 ) 有 整 数 解 关于x,y的方程 : k1*x + k2*y = gcd(k1,k2) 有整数解 x,yk1x+k2y=gcd(k1,k2)
关于 x , y x, y x,y 的方程 k 1 ∗ x + k 2 ∗ y = g c d ( k 1 , k 2 ) k1*x + k2*y = gcd(k1,k2) k1x+k2y=gcd(k1,k2), 由于这是一个一元一次方程,因此一定有解,需要证明的是它一定有整数解

不妨设 { k 1 = a k 2 = b \left\{\begin{matrix} &k1 = a & \\ &k2 = b & \end{matrix}\right. {k1=ak2=b时, x , y x,y x,y的解是 x 1 , y 1 即 a ∗ x 1 + b ∗ y 1 = m x1,y1即a*x1+b*y1 = m x1,y1ax1+by1=m

再设 { k 1 = b k 2 = a   m o d   b \left\{\begin{matrix} &k1 = b & \\ &k2 = a \bmod b & \end{matrix}\right. {k1=bk2=amodb时, x , y x,y x,y的解是 x 2 , y 2 即 b ∗ x 2 + ( a   m o d   b ) ∗ y 2 = m x2,y2即b*x2+(a \bmod b )*y2 = m x2,y2bx2+(amodb)y2=m(根据欧几里得算法 g c d ( a , b ) = g c d ( b , a   m o d   b gcd(a,b) = gcd(b,a\bmod b gcd(a,b)=gcd(b,amodb
∵ a ∗ x 1 + b ∗ y 1 = b ∗ x 2 + ( a m o d    b ) ∗ y 2 \because a*x1+b*y1 = b*x2+(a\mod b)*y2 ax1+by1=bx2+(amodb)y2
又 ∵ a = ( a m o d    b ) + b ∗ ⌊ a / b ⌋ 又\because a = (a\mod b) + b*\left \lfloor a/b \right \rfloor a=(amodb)+ba/b
∴ a m o d    b = a − ⌊ a / b ⌋ \therefore a\mod b = a - \left \lfloor a/b \right \rfloor amodb=aa/b
∴ a ∗ x 1 + b ∗ y 1 = b ∗ x 2 + ( a − ⌊ a / b ⌋ ) ∗ y 2 = a ∗ y 2 + b ∗ ( x 2 − ⌊ a / b ⌋ ∗ y 2 ) \therefore a*x1+b*y1 = b*x2+(a - \left \lfloor a/b \right \rfloor)*y2 =a*y2 + b*(x2- \left \lfloor a/b \right \rfloor*y2) ax1+by1=bx2+(aa/b)y2=ay2+b(x2a/by2)
∴ a ∗ ( x 1 − y 2 ) + b ∗ ( y 1 − x 2 + ⌊ a / b ⌋ ∗ y 2 ) = 0 \therefore a*(x1-y2) + b*(y1-x2+\left \lfloor a/b \right \rfloor*y2)=0 a(x1y2)+b(y1x2+a/by2)=0
则 { x 1 − y 1 = 0 y 1 − x 2 + ⌊ a / b ⌋ ∗ y 2 = 0 解 之 : { x 1 = y 1 y 1 = x 2 − ⌊ a / b ⌋ ∗ y 2 则\left\{\begin{matrix} x1-y1=0& \\ y1-x2+\left \lfloor a/b \right \rfloor*y2 =0& \end{matrix}\right.解之: \left\{\begin{matrix} x1=y1& \\ y1 =x2-\left \lfloor a/b \right \rfloor*y2& \end{matrix}\right. {x1y1=0y1x2+a/by2=0{x1=y1y1=x2a/by2

即 对 于 该 方 程 , a 与 b 的 解 , 可 以 用 b , a   m o d   b 的 解 表 示 出 来 即 对于该方程,a与b的解, 可以用 b, a\bmod b的解表示出来 abb,amodb
无 限 递 归 下 去 , a , b , g c d ( a , b ) 的 解 , 可 以 用 m , 0 , g c d ( m , 0 ) 表 示 出 来 无限递归下去, a,b,gcd(a,b)的解, 可以用 m,0, gcd(m,0)表示出来 a,b,gcd(a,b)m,0,gcd(m,0)(根据欧立德算法, m既是 a,b最大公约数,递归结果)

不妨设 { k 1 = m k 2 = 0 \left\{\begin{matrix} k1=m& \\ k2 =0& \end{matrix}\right. {k1=mk2=0时, x , y 的 解 为 x n , y n , m ∗ x n + 0 ∗ y n = g c d ( m , 0 ) = m x,y的解为x_{n},y_{n}, m*x_{n} + 0*y_{n} = gcd(m,0) = m x,yxn,ynmxn+0yn=gcd(m,0)=m
解 之 : x n = 1 , y n = ∀ R 解之:x_{n}= 1, y_{n} = \forall R xn=1,yn=R
回溯递归即 { x n − 1 = y n y n − 1 = x n − ⌊ a / b ⌋ ∗ y n \left\{\begin{matrix} x_{n-1}= y_{n}& \\ y_{n-1} =x_{n}-\left \lfloor a/b \right \rfloor*y_{n}& \end{matrix}\right. {xn1=ynyn1=xna/byn也一定是整数,无限向上递归,

最后可以确定 ∃ x , y ∈ Z , 使 得 a ∗ x + b ∗ y = m \exists x,y\in Z, 使得 a*x + b*y = m x,yZ,使ax+by=m

在这里插入图片描述

  • 19
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值