文章目录
前言
很久没写文章了,因为已经算步入大四了,需要准备实习的事情,一直再写自己的游戏项目,最近是因为又复习到了算法,所以再记录记录。
这次写的是很多基础的题目都有的,那就是高精度运算。
一、高精度是什么?
高精度算法:是处理大数字的数学计算方法。在一般的科学计算中,会经常算到小数点后几百位或者更多,当然也可能是几千亿几百亿的大数字。一般这类数字我们统称为高精度数,高精度算法是用计算机对于超大数据的一种模拟加,减,乘,除,乘方,阶乘,开方等运算。对于非常庞大的数字无法在计算机中正常存储,于是,将这个数字拆开,拆成一位一位的,或者是四位四位的存储到一个数组中, 用一个数组去表示一个数字,这样这个数字就被称为是高精度数。高精度算法就是能处理高精度数各种运算的算法。
二、高精度乘法
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
vector<int> add(vector<int>A, vector<int>B){
//A:765, B:321
vector<int>C;
int t = 0; //中间运算的数
//从7 + 3到 2 + 6 最后是 5 + 1
for(int i = 0; i < A.size() || i < B.size(); i ++){
if(i < A.size()) t += A[i];
if(i < B.size()) t += B[i];
C.push_back(t % 10);//7 + 3 = 10 % 10 = 0;
t = t / 10;
}
//t不是为1就是为0
if(t) C.push_back(t);
return C;
}
int main(){
//数字比较大必须用字符串输入
string a, b;
cin >> a >> b;
vector<int>A,B;
//如果a为567 A就是765, b为123, B为321
for(int i = a.size() - 1; i >= 0; i --) A.push_back(a[i] - '0');
for(int i = b.size() - 1; i >= 0; i --) B.push_back(b[i] - '0');
vector<int>C;
C = add(A, B);
for(int i = C.size() - 1; i >= 0; i --) cout << C[i] ;
return 0;
}
三、高精度减法
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
bool cmp(vector<int>A, vector<int>B){
if(A.size() != B.size()) return A.size() > B.size();
for(int i = A.size() - 1; i >= 0; i --){
if(A[i] != B[i]) return A[i] > B[i];
}
return true;
}
vector<int>sub(vector<int>A, vector<int>B){
vector<int>C;
int t = 0;
for(int i = 0; i < A.size(); i ++){
t = A[i] - t;
if(i < B.size()) t -= B[i];
C.push_back((t + 10) % 10);
if(t < 0) t = 1;
else t = 0;
}
while(C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main(){
string a, b;
cin >> a >> b;
vector<int>A,B;
for(int i = a.size() - 1; i >= 0; i --) A.push_back(a[i] - '0');
for(int i = b.size() - 1; i >= 0; i --) B.push_back(b[i] - '0');
vector<int>C;
if(cmp(A, B)){
C = sub(A, B);
for(int i = C.size() - 1; i >= 0; i --) cout << C[i];
}
else{
C = sub(B, A);
cout << "-";
for(int i = C.size() - 1; i >= 0; i --) cout << C[i];
}
return 0;
}
三、高精度乘法
#include<iostream>
#include<vector>
using namespace std;
vector<int>mul(vector<int>A, int b){
vector<int>C;
int t = 0;
for(int i = 0; i < A.size() || t; i ++){
if(i < A.size()) t += A[i] * b;
C.push_back(t % 10);
t /= 10;
}
while(C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main(){
string a;
int b;
cin >> a >> b;
vector<int>A;
//789 -> 987
for(int i = a.size() - 1; i >= 0; i --) A.push_back(a[i] - '0');
vector<int>C;
C = mul(A, b);
for(int i = C.size() - 1; i >= 0; i --) cout << C[i] ;
return 0;
}
四、高精度除法
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
vector<int> div(vector<int>A, int b, int &r){
vector<int>C;
r = 0;
for(int i = A.size() - 1; i >= 0; i --){
r = r * 10 + A[i];
C.push_back(r / b);
r = r % b;
}
reverse(C.begin(), C.end());
while(C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main(){
string a;
int b, r;
cin >> a >> b;
vector<int>A;
for(int i = a.size() - 1; i >= 0; i --) A.push_back(a[i] - '0');
vector<int>C;
C = div(A, b, r);
for(int i = C.size() - 1; i >= 0; i --) cout << C[i];
cout << endl << r << endl;
return 0;
}
总结
这四个算法除了除法是从前往后运算,其他都是从后开始运算,大数乘法多半用数组来计算。