目录
一、定点数
1、定义
-
小数点位置固定不变的数,叫做定点数;
2、定点数的分类
-
定点整数:约定小数点 固定在最低有效数位之后;
-
定点小数:约定小数点 固定在符号位之后,最高有效数位之前;
二、浮点数
1、理解
-
相当于生活中的科学计数法;例如生活中的10进制5000,可以写成以下几种形式;
-
由图可知,小数点的位置是可以不断变化的;且小数点位置的变化,不会影响表达式整体数值的大小;这就是浮点数;
-
所以如果想保存5000这个数,需要把两部分都保存起来才是一个完整的数;
2、定义
-
小数点位置不固定,可以发生变化;
-
小数点位置的变化,不会影响数值的大小;
3、表达式
-
M:尾数;
-
R:底数;生活中用十进制,R就是10;计算机中用二进制,R就是2;
-
e:指数部分;在计算机中叫做阶码;
4、计算机中存储浮点数
-
由于在计算集中,底数是2,所以就不需要保存了;
-
只需要保存尾数和指数(阶码),就能保存一个完整的数;
-
所以计算机中浮点数的表达格式由两个格式组成:阶码+尾数;
5、理解阶码和尾数
-
阶码:决定数值表示的范围,也就是这个浮点数最大能表示到哪个数;
-
尾数:决定数值表示的精度;尾数越大的话表示这个数值越精确;
注意:
由于计算机中约定固定长度的二进制位表示一个数,所以增加阶码的长度或尾数的长度,势必会导致另一部分的变化;
6、浮点数的运算
(1)运算步骤
(2)对阶:让数的阶码一致;
-
例如,一个科学计数法表示的数减去一个整数B,不能直接用科学计数法的底数直接去减整数,需把两个数调整成同一指数的格式再进行运算;
(3)尾数计算
(4)结果格式化
-
按照要求将结果转换成对应的格式即可。