刚刚提交成功这道题,赶紧来写个博客,以便记录和分享!
题目:
时间限制:10000ms
单点时限:1000ms
内存限制:256MB
描述
如果一个数组满足长度至少是2,并且其中任意两个不同的元素Ai和Aj (i ≠ j)其和Ai+Aj都是K的倍数,我们就称该数组是 完美K倍数组。
现在给定一个包含N个整数的数组A = [A1, A2, … AN]以及一个整数K,请你找出A的最长的完美子数组B,输出B的长度。
如果这样的子数组不存在,输出-1。
输入
第一行包含两个整数N和K。
第二行包含N个整数A1, A2, … AN。
1 ≤ N ≤ 100000
1 ≤ Ai, K ≤ 1000000000
输出
一个整数,表示答案。
样例输入
5 3
1 3 2 3 6
样例输出
3
害,你们瞅瞅这题目叙述的可真是多,真是让人头大!
那我就来简单说一下题目的意思吧!
意思是:就是在给的数组中重新分离出一个数组,让这个新数组的任意两个数之和是K的倍数!
比如数组为{1,3,2,3,6},K=3, 则新数组应该是{3,3,6}
思路:1.K是奇数,则只有这个新数组中全是K的倍数的数,才是完美的
2.K是偶数,则除了新的数组全是K的倍数情况,还有一种是任意两个余数是K/2数的和也是K的倍数。
3.如果这个数组中没有K的倍数的数,则考虑两个数之和是K,而这种情况下,数组长度只能是2.
1.的话肯定不用说,都理解。
对2.举一个例子,K=4,数组{8,4,2,6,10}
则最大长度应该是3,数组是{2,6,10}
3.K=4,数组{1,3,2,2,1} 长度是2
可以是{1,3}或{2,2}但长度都是2
下面来代码:
1
.#include<iostream>
#include<cstdlib>
#include<set>
using namespace std;
int main()
{
set<int>mod;
int n,b,x;
long int k;
cin>>n>>k;
int a[100000];
int i,j,s=0,sum=0,flag=0;
for(i=0;i<n;i++)
{
cin>>a[i];
if(a[i]%k==0)//如果k为奇数,则只有当数组中全为k的倍数时才满足完美k倍子数组要求,当然k为偶数此情况也满足要求
{
s++;
}
if(k%2==0