PyTorch深度学习实践
文章平均质量分 73
基础入门
敲代码的拉布拉多i
这个作者很懒,什么都没留下…
展开
-
PyTorch 深度学习实践 第3讲-Gradient descent algorithm
为了解决在机器学习过程中在遇到“鞍点”(即总体所有点的梯度和为0,导致w=w-0.01*0,w不会改变)而导致不能继续进行的问题。可以采用随机梯度下降,即随机的取一组(x,y)的梯度,作为梯度下降的依据,而不用总体所有点的梯度和,作为梯度下降的依据。3、本算法中的随机梯度主要是指,每次拿一个训练数据来训练,然后更新梯度参数。任务:模拟梯度下降算法,计算在x_data、y_data数据集下,y=w*x模型找到合适的w的值。2.梯度函数gradient()由计算所有训练数据的梯度更改为计算一个训练数据的梯度。原创 2023-06-01 18:11:13 · 82 阅读 · 0 评论 -
PyTorch 深度学习实践 第2讲 linear_model
2.for循环中,使用了np.arange.numpy中的经典函数,不熟悉的话去补一下numpy基础。1.函数forward()中的变量w。这个变量最终的值是从for循环中传入的。B站 六二大人,参考up错错莫,并加入了自己的思考(特别鸣谢)5.对代码进行了详细的注释,方便新手入门。原创 2023-06-01 15:58:15 · 141 阅读 · 0 评论