PCA(explained_variance_ratio_与explained_variance_)
1. scikit-learn PCA类介绍
PCA的方法explained_variance_ratio_
计算了每个特征方差贡献率,所有总和为1,explained_variance_
为方差值,通过合理使用这两个参数可以画出方差贡献率图或者方差值图,便于观察PCA降维最佳值。
PCA中的参数选项可以对数据做SVD与归一化处理很方便,但是需要先考虑是否需要这样做。
在scikit-learn中,与PCA相关的类都在sklearn.decomposition
包中。最常用的PCA类就是sklearn.decomposition.PCA,我们下面主要也会讲解基于这个类的使用的方法。
除了PCA类以外,最常用的PCA相关类还有KernelPCA类,在原理篇我们也讲到了,它主要用于非线性数据的降维,需要用到核技巧。因此在使用的时候需要选择合适的核函数并对核函数的参数进行调参。
另外一个常用的PCA相关类是IncrementalPCA类,它主要是为了解决单机内存限制的。有时候我们的样本量可能是上百万+,维度可能也是上千,直接去拟合数据可能会让内存爆掉, 此时我们可以用IncrementalPCA类来解决这