DeepSeek与ChatGPT作为当前主流的两大AI语言模型,在技术架构、应用场景、成本效益等方面存在显著差异。以下从多个维度进行对比分析:
1. 技术架构与训练方式
-
DeepSeek
-
架构:采用混合专家模型(MoE),包含6710亿参数,其中370亿参数动态激活处理任务,资源利用率更高。
-
训练方式:从零开始构建训练框架,注重数据质量和多样性,知识库更新至2023年第四季度,对新兴科技趋势(如Sora视频模型)更敏感。
-
创新点:引入负载平衡和多标记预测技术,提升响应速度和准确性。
-
-
ChatGPT
-
架构:基于Transformer架构的GPT系列模型(如GPT-4),参数规模约1万亿,依赖大规模预训练和微调。
-
训练方式:数据截止至2023年4月(GPT-4 Turbo),侧重通用场景的平衡输出,依赖OpenAI的超级计算资源。
-
创新点:支持多模态功能(如DALL·E3图像生成和语音交互),在开放域对话中灵活性强。
-