动手撸深度学习(原创附视频讲解)
文章平均质量分 87
(订阅一份,博主全部专栏全部文章都可以看)最详细 最有意义的专栏! 付费是为了督促你学而所值! 不缺这份钱,只希望你在学完后能觉得,这波不亏~
文章付费 只为有缘人而开!
cv君
欢迎订阅cv君,全部文章永久可看~ ,订阅后可联系我指导,都是手把手教程。
cv君是人工智能专业的AI科班毕业优秀毕业生,从18年搞算法,至今已六年,曾在Vivo任职,负责相机AI算法落地与优化;曾在Intel获得过多次带高薪的奖,曾获CCF视觉算法赛冠军、Kaggle银牌、阿里世界人工智能大赛Top10、ICLM Top5任职期间获公司:唯一S级员工;微软黑客松比赛二等奖;擅长AI全栈,AI成像算法
cv君文章质量不错,长期更新,订阅一次即永久观看。
cv君属于科研科技热爱者,务实工作,我从来不写水文,感兴趣可以订阅,愿你与我一同为中国科技崛起而努力!
因为热爱,所以坚持去做! —cv君
展开
-
【动手撸深度学习】AI学子借问显卡何处有,牧童遥指我这里!(全面亲测)
cv君力挺的,最值得看的专栏系列:动手撸深度学习(订阅一个专栏,全部专栏免费可看~)学习完本系列,你能从调包侠到一个能独立打比赛的造包侠!文章付费,不想让太多人白嫖!!!因为全部原创,很珍贵~话不多说,开始正题,我通过视频 和这篇文章的形式归纳总结了大量能让 没钱的AI学生 白嫖优质算力的平台,尤其是包括使用方法,改善方法,编码方法,以及实践!下面给了一个优秀的例子,能让你通过一篇教程,学会下列技术栈的使用(不包括原理):目标检测算法的调包,图像分类的原创使用,如何白嫖colab 的T4显卡(附带保持原创 2021-02-21 18:03:07 · 25852 阅读 · 100 评论 -
【动手撸深度学习】不吹不黑一份代码即可进Kaggle排行榜!
大家好,我是cv君,今天分享一份源码,有了这份代码,你就是一个Kaggle的一个图像分类赛排行榜因为这是很久以前的比赛,不知道还开不开榜,比如选择你还可以去刷Kaggle的Mnist排行榜 99.93+分以上就能进入排行榜(没记错的话)这个Mnist,每个AI的选手都做过,大家可以看我这篇文章,是进Mnist排行榜的代码:https://blog.csdn.net/qq_46098574/article/details/113383390我们今天不做Mnist了,我们做几年前,特别著名的cat-dog原创 2021-02-17 20:12:24 · 38366 阅读 · 80 评论 -
【动手撸深度学习】深度挖掘AI的图像分类能力!
cv君力挺的:最值得看的专栏系列:动手撸深度学习,学习完本系列,你能从调包侠到一个能独立打比赛的朋友周边的神!文章付费,不想让太多人白嫖!!!因为全部原创,珍很贵!!今天给大家来分享一下调参技巧,看完你会感谢我的~猫狗大战三个部分!今天第一节 介绍如何搭建一个自己的神经网络,让他分辨猫狗,并且知道他是如何分类的!更有原创视频介绍!猫狗分类,正式开始!看完,加油~今天开更,干货满满!一开始我们就从实践项目开始,第一个重量级练手项目就是猫狗大战,我们计划分为三个部分来讲解,逐步提高我们的分类精度,在这个原创 2021-02-15 12:39:23 · 52195 阅读 · 89 评论 -
【动手撸深度学习】领导说你连调参都不会?
文章目录神经网络训练细节与注意点梯度检查使用双精度浮点数使用少量数据点不要让正则化项盖过数据项训练过程中的监控训练集/验证集上的准确度我们用标准差为0.01均值为0的高斯分布值来初始化权重(这不合理)重新正确设定权重:随机梯度下降与参数更新普通更新物理动量角度启发的参数更新Nesterov Momentum计算dx_ahead(在x_ahead处的梯度,而不是在x处的梯度)学习率退火二阶方法Adam欢迎关注公众号~ 你可以获取这篇文章的详细讲解视频和相关实现代码~想获取视频和实现代码(巨大学习价值)~可以在原创 2021-01-31 13:52:40 · 33869 阅读 · 45 评论 -
【动手撸深度学习】一文玩转深度学习搭建实现经典图片分类!
手撸神经网络 深度学习环境搭建与简单神经网络实现图片分类文章目录手撸神经网络 深度学习环境搭建与简单神经网络实现图片分类手撸神经网络 全代码 如下官方安装教程WIN10安装CUDA10CUDA安装成功!WIN10安装cuDNNcuDNN安装完成!!大家好,我是cv君 周小夏 从现在开始开启一个手撸神经网络模块,和大家一起不做调包侠,自己全手撸神经网络,带领大家实现各种任务,解决各种问题,尤其是知道神经网络底层原理,让神经网络更可解释~ 我所有代码会开源到github以及各人公众号 :DeepAI原创 2021-01-29 14:02:13 · 54446 阅读 · 46 评论 -
【动手撸深度学习】细粒辨花 一文实践清华博士Densenet
hello ,大家好,欢迎来到动手撸深度学习,一个必看系列,我会将动手撸深度学习一直完善下去,让文章更精彩,更优秀,之所以选择付费,主要是文章原创,全是干货,大家可以看我的个人信息,点赞数,收藏数,可以看出,我的文章从来不水,把自己的知识全盘托出,佛曰 渡有缘人,我在csdn以前文章都是免费的,现在我设置成了付费,不希望精品白嫖,因为你确实可以从这学到很多东西~cv君力挺的:最值得看的专栏系列:动手撸深度学习,学习完本系列,你能从调包侠到一个能独立打比赛的朋友周边的神!文章付费,不想让太多人白嫖!!!因原创 2021-02-25 09:58:34 · 22123 阅读 · 25 评论 -
【深度】YOlOv4导读与论文翻译
【深度】YOlOv4导读与论文翻译刚刚发布YOlOv4!首先简介一下YOLO YOLO可以说是计算机视觉领域最知名的目标检测算法之一,也因为开源被业界广泛采用。Redmon单是凭借这个算法,就曾获得过2016年CVPR群众选择奖(People’s Choice Award)、2017年CVPR最佳论文荣誉奖(Best Paper Honorable Mention)。YOLO及其改进...原创 2020-04-24 15:27:46 · 20243 阅读 · 4 评论 -
仁兄,可曾听闻OpenVINO
初识 OpenVINO一、 功能预览1: YOLO与Darknet网络通过OpenVINO 加速工具包实现影像分类2:A. 影像分类:一张影像原则上只能被分到一个类别,所以影像中最好只有一个主要物件。若影像中出现多个物件,那分类时则可能出现多个分类结果,同时会给出每个分类的不同机率,此时误分类的可能性就会大大提升。B. 物件定位:一张影像中可同时出现多个相同或不同物件,大小不据,辨...原创 2020-04-19 14:44:25 · 18225 阅读 · 2 评论 -
基于深度学习GAN的Ai换装(比赛记录)
比赛记录(一)一、AI换装:1:模型安装与调试Viton -Gan项目地址:https://github.com/shionhonda/viton-ganclone好以后,目录中只有文件,没有文件夹,缺少:1:编译环境,torch -gpu版本地址:链接:https://pan.baidu.com/s/1d6ThY0AlhDF-cJQenL8vLw提取码:j784 通过pip install XXXXXXX.whl安装 (python3.7, 64位,cuda为10.2)通过pip原创 2020-06-26 21:05:54 · 15214 阅读 · 78 评论 -
【机器学习】回归预测+BP回归
线性和多项式回归在这一简单的模型中,单变量线性回归的任务是建立起单个输入的独立变量与因变量之间的线性关系;而多变量回归则意味着要建立多个独立输入变量与输出变量之间的关系。除此之外,非线性的多项式回归则将输入变量进行一系列非线性组合以建立与输出之间的关系,但这需要拥有输入输出之间关系的一定知识。训练回归算法模型一般使用随机梯度下降法(SGD)。优点:建模迅速,对于小数据量、简单的关系很有效;线性回归模型十分容易理解,有利于决策分析。缺点:对于非线性数据或者数据特征间具有相关性多项式回归难以建模;原创 2020-06-14 13:37:34 · 12299 阅读 · 49 评论 -
【全解】梯度下降+回归(一)
首先要明白什么是回归。回归的目的是通过几个已知数据来预测另一个数值型数据的目标值。假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就是要预测的目标值。这一计算公式称为回归方程,得到这个方程的过程就称为回归。 假设房子的房屋面积和卧室数量为自变量x,用x1表示房屋面积,x2表示卧室数量;房屋的交易价格为因变量y,我们用h(x)来表示y。假设房屋面积、卧室数量与房屋的交易价格是线性关系。他们满足公式上述公式中的θ为参数,也称.原创 2020-06-14 13:35:05 · 9176 阅读 · 0 评论 -
基于深度学习的语义分割与实例分割(一)
本篇文章后文侧重医学领域图像分割,作为计算机视觉的基础,是图像理解的重要组成部分,也是图像处理的难点之一。那么,如何优雅且体面的图像分割?先说一个简单的的吧,也就是先做一回调包侠:实现的库——PixelLib,了解一下。当然,如此好用的项目,开源是必须的。为什么要用到图像分割?虽然计算机视觉研究工作者,会经常接触图像分割的问题,但是我们还是需要对其做下“赘述”(方便初学者)。我们都知道每个图像都是有一组像素值组成。简单来说,图像分割就是在像素级上,对图像进行分类的任务。图像分割中使用的一些原创 2020-05-22 15:38:28 · 12970 阅读 · 4 评论 -
计算机视觉的常用图像处理技术
本篇将介绍常用基于OpenCv等视觉库的影像分割以及图像处理技术,并且附赠源码一:边检测器先复习一下基础的OpenCv操作:如上图:第一张是原图;第二张是灰度图:gray = cv2.imread('lena.jpg', cv2.IMREAD_GRAYSCALE)用法很简单,调包调参嘛,以灰度形式读图,介绍一下灰度转换原理:RGB是三通道彩色图,在矩阵(图像)中的顺序是B,G,R;GRAY是单通道灰度图COLOR_BGR2GRAY的原理: GRAY = B * 0.114 + G *.原创 2020-05-21 22:38:59 · 15341 阅读 · 6 评论 -
基于深度学习的医学图像分割(一)
医学图像分割是医学图像处理与分析领域的复杂而关键的步骤,其目的是将医学图像中具有某些特殊含义的部分分割出来,并提取相关特征,为临床诊疗和病理学研究提供可靠的依据,辅助医生作出更为准确的诊断。由于医学图像自身的复杂性,在分割过程中需要解决不均匀及个体差异等一系列问题,所以一般的图像分割方法难以直接应用于医学图像分割。当前,医学图像分割仍在从手动分割或半自动分割向全自动分割发展。 图像分割的定义: 令R代表整个图像区域,对R的分割可看做将R分成若干个满足以下条件的非空子集(子区域){R1,R2,R原创 2020-05-21 10:18:46 · 21671 阅读 · 0 评论 -
【项目实战】基于PeLee的多目标实时检测
提到轻量级神经网络,大家都会提到MobileNet V1 V2 和 ShuffleNet V1 V2,似乎较少看到大家提到PeleeNet,下面介绍一下检测网络PeleePelee:移动端实时检测骨干网络在ImageNet数据集上,PeleeNet只有MobileNet模型的66%,并且比MobileNet精度更高。PeleeNet作为backbone实现SSD能够在VOC2007数据集上达到76.4%的mAP。文章总体上参考DenseNet的设计思路,提出了三个核心模块进行改进,有一定参.原创 2020-05-16 09:40:02 · 11527 阅读 · 51 评论 -
【全解】基于OpenCv的SVM实现车牌检测与识别
都说深度学习的出现极力地打压着传统机器学习算法的地位,作为一个二刷机器学习经典算法的小伙伴告诉你:还真多半是这样,咳,毕竟还是差距较大,深度学习处理真实世界多维度的问题更权威!不过,有的事情还是机器学习能做的,经典永不过时,下面我们来做一个实践。前两篇博客比较仓促,今天我把全部整理了一遍,流程图过程也全部展现,让大家更好的明白流程,篇幅字数上万,建议细品!我们来看看车牌检测基本的识别流程:我使用的是OpenCv自带的SVM模型,由于SVM的突出表现,得到了更多官方的青睐,就诞生出了很多方便使用的.原创 2020-05-13 12:42:02 · 46030 阅读 · 34 评论 -
【实战】基于OpenCv的SVM实现车牌检测与识别(二)
这期继续分享SVM实践项目:车牌检测与识别,同时也介绍一些干货回顾一下,上期介绍了OpenCv的SVM模型训练,这期继续介绍一下识别过程。这幅流程图还是很经典,直观的。我们先分享一下上期说的:OpenCv的中文显示方法我使用的是PIL的显示方法,下面简介一下教程:1: 字体simhei.ttf需要下载,然后在font = ImageFont.truetype("./simhei.tt...原创 2020-05-06 09:33:09 · 45612 阅读 · 1 评论 -
【你只需看一次】YOLO 全系列目标检测算法
YOLO目标检测算法诞生于2015年6月,从出生的那一天起就是“高精度、高效率、高实用性”目标检测算法的代名词。在原作者Joseph Redmon博士手中YOLO经历了三代到YOLOv3,今年初Joseph Redmon宣告退出计算机视觉研究界后,YOLOv4、YOLOv5相继而出,且不论谁是正统,这YOLO算法家族在创始人拂袖而出后依然热闹非凡。本文带领大家细数在此名门之中自带“YOLO”的算法,总计 23 项工作,它们有的使YOLO更快,有的使YOLO更精准,有的扩展到了3D点云、水下目标检测、有的原创 2020-08-02 22:13:17 · 17037 阅读 · 0 评论 -
最强端到端文本识别模型 Mask TextSpotter v3 来了!
文章目录简述Mask TextSpotter v3整体流程实验结果总结与思考cv侠的个人公众号helllo 大家好,我是cver,今天给大家推荐Ocr 算法~简述场景文本的识别可以用文本检测+文本识别两个过程来做,近年来端到端的场景文本识别(即Text Spotting)越来越引起学术界的重视,而华中科技大学白翔老师组的 Mask TextSpotter v1、v2 一直是该领域的代表性工作。近日 Mask TextSpotter v3 发布,代码已开源,论文 Mask TextSpotter原创 2021-01-11 19:50:52 · 5650 阅读 · 101 评论 -
【效率提高10倍项目原创发布!】深度学习数据自动标注器开源 目标检测和图像分类(高精度高效率)
文章目录项目结构与使用教程目标检测模式影像分类模式数据采集演示与训练出来的模型演示训练出来的目标检测模型演示训练出来的分类模型演示【固定框检测模式】一键训练YOLOv3 YOLOv4 YOLOv5 方法转换数据训练与检测训练检测核心部分介绍目标检测数据标注分类分类训练部分分类推理部分模型导出部分后续优化优化tips1: 使用更多数据增强优化tips2:使用高质量相机采集,或者修改图片size获取更高清图片优化tips3:使用更高质量跟踪算法:比如deepsort ,我已经做了,后续慢慢会开源优化tips4:原创 2020-12-20 22:00:45 · 68964 阅读 · 296 评论 -
【实战】基于TensorRT 加速YOLO系列以及其他加速算法实战与对比
今天cv调包侠尝试了使用TensorRT 做YOLO的加速,先概述我这边实现的速度和精度对比:精度上对比:可以看到,精度上使用TensorRT 精度不掉,反而略微上升了一些些(具体情况未知,还在摸索)TensorRT 速度上的对比:另外值得注意的是,我使用的TensorRT的作者介绍说:YOLOV5 s小模型原本已经很快了,使用python版的tensorRT加速反而慢了一些,使用cpp版快了3倍,如果是使用YOLOV5 X的大模型,加速效果会更明显。下面开始手把手教学,先大致说说思路:1原创 2020-12-07 15:58:11 · 16929 阅读 · 128 评论 -
【项目实战】智能零售商品检测(训练详解+优化部署策略+大型数据开源)基于EfficientDet Pytorch
文章目录前言何为Efficientdet1 数据准备数据标注附上自己的Lablimg简易教学:将XML转换成COCO JSON格式安装依赖模型训练模型推理模型介绍BiFPNCross-Scale Connections后续思路前言这两天我CV调包侠帮助自己深度学习交流群的朋友做一个智能零售的企业级项目,我帮助他完成了零售商品检测的基本迭代一,已经轻松地完成了Yolo系列的训练,比如Yolov5 和Yolov3,Efficientdet是一个优秀的目标检测算法,速度与精度并存的实时性目标检测算法,我们今天原创 2020-11-16 19:37:08 · 13905 阅读 · 57 评论 -
【项目实战】基于Yolov5 火灾浓烟检测与天池免费算力的教学篇
文章目录免费算力,白嫖党顶级薅羊毛!一 阿里天池的使用篇二 开启我们在天池服务器的第一个项目: 火灾浓烟与吸烟检测2.1 演示2.2 介绍三 模型训练四 天池端训练五 总结与技巧六 总结免费算力,白嫖党顶级薅羊毛!愁笔记本差,又买不起台式机显卡的同学,请注意啦!今天cv调包侠分享一下自己这几天开始使用的阿里天池的免费GPU服务器,以及这篇文章介绍如何在天池的tesla p100 16gb显存的服务器上训练自己的深度学习视觉模型~我们以火灾浓烟检测为例子。首先,大家可以看我Yolov5 吸烟检测文章与原创 2020-10-04 12:22:11 · 58555 阅读 · 118 评论 -
【项目实战】YOLOV5 +实时吸烟目标检测+手把手教学+开源全部
本原创项目长期更新,旨在完成校园异常行为实时精检测,做到集成+N次开发+优化(不止局限于调包)为止,近期将不断更新以下模型+数据+标注文件+教程。关注博主,Star 一下github,一起开始美妙的目标检测之路吧~~文章目录本原创项目长期更新,旨在完成校园异常行为实时精检测,做到集成+N次开发+优化(不止局限于调包)为止,近期将不断更新以下模型+数据+标注文件+教程。关注博主,Star 一下github,一起开始美妙的目标检测之路吧~~一、项目展示二、项目资源共享1:训练图片:香烟图片+吸烟手势+烟雾三、原创 2020-07-14 12:00:17 · 129888 阅读 · 238 评论 -
【项目实战】数据爬虫 + 数据清洗 + 数据可视化
自己亲手全手打了一套系统的代码,帮助朋友完成设计,做了贵阳市几个区的房屋价格爬取以及数据清洗和可视化操作,代码细细道来:上图镇楼,接下来细说。一:数据挖掘我选用了链家网做数据爬取场所(不得不唠叨一句,这个网站真是为了爬虫而生的,对爬虫特别友好哈哈哈,反扒措施比较少)比如我们爬取贵阳市乌当区的所有房子的房价及其他信息:比如我们爬取第一个房子的价格:115万:接下来我们可以使用复制CSS选择器或者XPath等等来实现获取:下面我们使用复制XPath的方式,修改路径即可(需要一定前端知识)原创 2020-05-11 10:37:08 · 71750 阅读 · 281 评论