能忍受面试官对你说不行??
文章平均质量分 90
【注意,订阅一个专栏,博主所有的文章都能看~】集结个人和好朋友上岸大厂,国企,外企,高校的面经~本来是想免费的,主要是防止过多人看到,提高大家竞争力~有缘,你再来看~都是真实经历,大家一起上岸。
cv君
欢迎订阅cv君,全部文章永久可看~ ,订阅后可联系我指导,都是手把手教程。
cv君是人工智能专业的AI科班毕业优秀毕业生,从18年搞算法,至今已六年,曾在Vivo任职,负责相机AI算法落地与优化;曾在Intel获得过多次带高薪的奖,曾获CCF视觉算法赛冠军、Kaggle银牌、阿里世界人工智能大赛Top10、ICLM Top5任职期间获公司:唯一S级员工;微软黑客松比赛二等奖;擅长AI全栈,AI成像算法
cv君文章质量不错,长期更新,订阅一次即永久观看。
cv君属于科研科技热爱者,务实工作,我从来不写水文,感兴趣可以订阅,愿你与我一同为中国科技崛起而努力!
因为热爱,所以坚持去做! —cv君
展开
-
【必看干货】在我面了10多家大厂(上岸)后,我吐血总结你要是这12道题都不能拿满分,那你就与大厂算法无缘了 ——AI视觉算法工程师
这12题 你敢来应战吗?(个人有精炼的总结,就算不会,也能熟记混过~)1 简要说明one two stage差别One-Stage目标检测算法,这类检测算法不需要Region Proposal阶段,可以通过一个Stage直接产生物体的类别概率和位置坐标值,比较典型的算法有YOLO、SSD和CornerNet;Two-Stage目标检测算法 ,这类检测算法将检测问题划分为两个阶段,第一个阶段首先产生候选区域(Region Proposals),包含目标大概的位置信息,然后第二个阶段对候选区域进行分类和位原创 2021-05-25 07:55:48 · 39587 阅读 · 9 评论 -
【硬核干货!】不刷面经,还想上岸大厂?AI算法篇(一)
文章目录面试前的准备个人基本信息:专业技能:项目/实习/实验经历:强烈建议获奖情况:个人简单评价:校招时投简历1.内推。2.宣讲会。3.双选会。4.网投。笔试和面试过来人重点提醒大家好,我是cv君,开始面经,今天说说很重要的个人心得~这个专栏,应许多粉丝要求开通,希望能多多帮助到你们,速速三连走起,不然下次你面试前可就找不到了~cv君 目前人工智能方向本科大三,打过几十个 深度学习系列天梯大奖赛,拿过Top10,拿过世界奖,写了一本书,论文在著,拿过大厂offer,外企深度学习算法岗实习和国企nlp原创 2021-04-30 11:16:34 · 12670 阅读 · 16 评论 -
【全解】梯度下降+回归(一)
首先要明白什么是回归。回归的目的是通过几个已知数据来预测另一个数值型数据的目标值。假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就是要预测的目标值。这一计算公式称为回归方程,得到这个方程的过程就称为回归。 假设房子的房屋面积和卧室数量为自变量x,用x1表示房屋面积,x2表示卧室数量;房屋的交易价格为因变量y,我们用h(x)来表示y。假设房屋面积、卧室数量与房屋的交易价格是线性关系。他们满足公式上述公式中的θ为参数,也称.原创 2020-06-14 13:35:05 · 9176 阅读 · 0 评论 -
NLP入门到实战(四)关键词权重计算算法
TF-IDF介绍关注不迷路!TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。TF是词频(Term Frequency),IDF是逆文本频率指数(Inverse Document Frequency)。TFIDF的主要思想是:**如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。**TFIDF实际上是:TF * IDF,TF词频(原创 2020-06-11 10:31:27 · 19734 阅读 · 1 评论 -
AR+AI的这些落地应用 你居然不知道?
文章目录AR 口可乐视觉识别拣选ARVRMRAR 口可乐视觉识别拣选Coca-Cola HBC通过智能眼镜实现视觉识别拣选货物可口可乐希腊公司(以下简称“Coca-Cola HBC”)是世界第二大可口可乐装瓶商,也是欧洲最大的装瓶商,拥有希腊最全的供应链,遍布全国4,000个点,4个工厂和6个配送基地,每年的销量超过20亿箱。位于塞萨洛尼基的希腊北部配送基地是可口可乐在该地区最大的配送点之一,这里有200名员工,每天为963名客户提供服务,拥有14,020平米的仓储空间,容纳8,733个托盘。平均每原创 2021-02-06 21:15:55 · 2916 阅读 · 39 评论 -
【多语言刷题记】Leetcode
【简单】两数之和【困难】串联所有单词的子串的PYTHON/C++求解Python暴力解法class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: for i in range(len(nums-1)): for j in range(len(nums)): if i != j and nums[i] + nums[j]原创 2020-06-08 11:52:56 · 12333 阅读 · 0 评论 -
【回归预测】SVM基础实战篇之经典预测(三)
【玩点有趣的】这几篇SVM介绍是从0到1慢慢学会支持向量机,将是满满的干货,都是我亲自写的,可以随我一起从头了解SVM,并在短期内能使用SVM做到想要的分类或者预测~我也将附上自己基础训练的完整代码,可以直接跑,建议同我一样初学者们,自己从头到尾打一遍,找找手感,代码不能光看看,实践出真知! 回顾一下,上上篇,我们建立和比较了线性分类器和非线性分类器,比较了多元线性核函数和线性核函数,解...原创 2020-05-02 14:43:44 · 19140 阅读 · 9 评论 -
NLP入门到实战(二)时间提取
本篇将干货~实践一下基于jieba,spacy, pyltp, lac, nltk, foolltk等开源库进行实(调)践(包)!时间提取属于NLP中的实体命名识别,例如匹配时间,地点,物体,人物等等…一、jieba代码(有的代码未删除,功能不仅为单纯匹配时间。):import refrom datetime import datetime, timedeltafrom dateutil.parser import parseimport jieba.posseg as psgdef.原创 2020-06-01 10:56:16 · 12054 阅读 · 0 评论 -
NLP从入门到实战(三)
词袋模型与句子相似度计算本文将会介绍NLP中常见的词袋模型(Bag of Words)以及如何利用词袋模型来计算句子间的相似度(余弦相似度,cosine similarity)。 首先,让我们来看一下,什么是词袋模型。将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个词语都是独立的。例如下面个例句,就可以构成一个词袋,袋子里包括所有词语。假设建立一个数组(或词典)用于映射匹配我们以下面两个简单句子为例:sent1 = "Word bag model,Put all the words in原创 2020-06-06 15:12:24 · 11102 阅读 · 1 评论 -
听说正则表达式比数学难?你觉得呢?
一、 Re首先,推荐大家一个正则表达式网站:嗨正则https://hiregex.com1. 常用的正则表达式符号2. 常用的匹配方法1) re.match(pattern, string, flags=0)说明:在string的开始处匹配模式>>> import re>>> a = re.match(‘in’,“inet addr:10.161.146.134”) #从头开始匹配in字符>>> a.group()‘in’.原创 2020-06-23 10:34:37 · 8472 阅读 · 1 评论 -
NLP入门从入门到实战 实体命名识别 +中文预处理之繁简体转换及获取拼音
文章目录一 中文预处理之繁简体转换及获取拼音二 NLP入门 命名实体识别(NER)公众号获取源码数据集,一起AI:一 中文预处理之繁简体转换及获取拼音在日常的中文NLP中,经常会涉及到中文的繁简体转换以及拼音的标注等问题,本文将介绍这两个方面的实现。 首先是中文的繁简体转换,不需要使用额外的Python模块,至需要以下两个Python代码文件即可:示例代码如下(将代码文件与langconv.py与zh_wiki.py放在同一目录下):from langconv import *# 转原创 2020-09-17 10:03:26 · 11897 阅读 · 0 评论 -
【爬树合集】难啃的骨头——红黑树
【爬树合集】难啃的骨头——红黑树写在前面红黑树应用:1.红黑树在Linux非实时任务调度中的应用2.红黑树在Linux虚拟内存中的应用3.红黑树在检测树的平衡性上的应用4.epoll在内核中的实现,用红黑树管理事件块5.nginx中,用红黑树管理timer等6.Java的TreeMap实现7.广泛用在C++的STL中。map和set都是用红黑树实现的。 在JDK1.6,J...原创 2020-04-25 18:03:34 · 10932 阅读 · 7 评论 -
【AI全栈三】语音质量算法、评价指标 看一篇就够系列(附算法源码+干货)
文章目录那么我们过去是怎么评价的?客观评价-基于指标客观评价-基于模型R&S®UPV音频分析仪小结那么我们现在用哪些评价方法呢?基于深度学习的方法:AutoMOS, QualityNe, NISQA, MOSNetMOSNet(`absolute.mosnet`或`mosnet`)语音质量的感知评估(Perceptual evaluation of speech quality, PESQ)客观语音质量评估的单端方法P.563预处理特征参数提取失真类型判决和结果映射客观评价结果的映射模型NISQA:原创 2021-05-16 22:04:22 · 12025 阅读 · 10 评论 -
人工智能基础实践课代码(一) 产生式推理(动物识别系统)+极大极小值(一字棋)+ 遗传算法
1、实验目的理解和掌握产生式系统的推理方法,能够用选定的编程语言实现推理机。2、实验内容和要求(1)以实验1的动物识别系统的规则库和综合数据库为基础;(2)用选定的编程语言开发一个推理机,该推理机能利用实验1的规则库和综合数据库进行推理。话不多说,直接上代码C++版本运行截图#include<iostream>#include<string>#include<cstdlib>#include<iomanip>#include&l原创 2020-09-15 15:26:42 · 12919 阅读 · 0 评论 -
【布隆过滤】大数据+查重过滤+爬虫领域精选算法Python ,C++,Java实现源码放送~
学爬虫和大数据程序员建议必看算法,源码放送了~文章目录一、算法简介二、数据如何存入布隆过滤器三、布隆过滤器为什么会有误判四、底层原理:HashMap 的问题布隆过滤器数据结构使用场景python实现(看这里)六、 使用方法重点:简单测试:c++代码实现:Java实现布隆过滤器一、算法简介本质上布隆过滤器是一种数据结构,比较巧妙的概率型数据结构,特点是高效地插入和查询。根据查询结果可以用来告诉你 某样东西一定不存在或者可能存在 这句话是该算法的核心。相比于传统的 List、Set、Map 等数据结构,原创 2020-08-11 15:02:49 · 14281 阅读 · 0 评论 -
精读目标检测5——yolo2详解及其预测代码复现
学习前言……最近在学习yolo1、yolo2和yolo3,写这篇博客主要是为了让自己对yolo2的结构有更加深刻的理解,同时要理解清楚先验框的含义。代码下载尽量配合代码观看会更容易理解。链接:https://pan.baidu.com/s/1CdA_2aJgjiseCcjdbQJ0hA提取码:2l0d文章作者:Bubbliiiing实现思路1、yolo2的预测思路(网络构建思路)YOLOv2使用了一个新的分类网络DarkNet19作为特征提取部分,DarkNet19包含19个卷积层、5原创 2021-04-09 21:30:59 · 4510 阅读 · 3 评论 -
【原理+实战】AI所有领域SOTA综述 (一)语音识别
文章目录前言语音识别原理信号处理,声学特征提取识别字符,组成文本声学模型语言模型词汇模型语音声学特征提取:MFCC和LogFBank算法的原理实战一 ASR语音识别模型系统的流程基于HTTP协议的API接口客户端未来实战二 调百度和科大讯飞API实战三 离线语音识别 Vosk前言首先,cv君下血本费时整理了AI在音视频领域的大量的方向,形成本文综述,从原理到底层算法,到上层应用,统统透析~本系列由于综述文章过长的原因,所以分开写了。文章附带大量的算法原理+代码实现教学,欢迎关注,一起AI。语音识别原原创 2021-04-01 21:36:23 · 5468 阅读 · 9 评论 -
精选目标检测3——yolo1、yolo2、yolo3和SSD的网络结构汇总对比
学习前言各个网络的结构图与其实现代码 1、yolo1 2、yolo2 3、yolo3 4、SSD总结学习前言……最近在学习yolo1、yolo2和yolo3,事实上它们和SSD网络有一定的相似性,我准备汇总一下,看看有什么差别。各个网络的结构图与其实现代码1、yolo1在这里插入图片描述由图可见,其进行了二十多次卷积还有四次最大池化,其中3x3卷积用于提取特征,1x1卷积用于压缩特征,最后将图像压缩到7x7xfilter的大小,相当于将整个图像划分为7x7原创 2021-03-25 22:03:37 · 31579 阅读 · 19 评论 -
精选目标检测2——mAP的概念
文章目录学习前言什么是TP、TN、FP、FN什么是Precision和Recall什么是mAP学习前言在Github上我们可以看到许多模型,他们都有mAP值的评价指标,如下图所示:这到底是个啥呢?我查了好久的资料……什么是TP、TN、FP、FNTP的英文全称为True Positives,其指的是被分配为正样本,而且分配对了的样本,代表的是被正确分类的正样本,。TN的英文全称为,其指的是被分配为负样本,而且分配对了的样本,代表的是被正确分类的负样本。FP的英文全称为False Positi原创 2021-03-20 14:37:16 · 27080 阅读 · 15 评论 -
精选目标检测1——IOU的概念与python实例
文章目录学习前言IOU的特点全部代码学习前言神经网络的应用还有许多,目标检测就是其中之一,目标检测中有一个很重要的概念便是IOU。什么是IOUIOU是一种评价目标检测器的一种指标。下图是一个示例:图中绿色框为实际框(好像不是很绿……),红色框为预测框,当我们需要判断两个框之间的关系时,需要用什么指标呢?此时便需要用到IOU。计算IOU的公式为:可以看到IOU是一个比值,即交并比。在分子部分,值为预测框和实际框之间的重叠区域;在分母部分,值为预测框和实际框所占有的总区域。交区域原创 2021-03-20 14:02:00 · 31172 阅读 · 13 评论 -
无监督学习 聚类算法代码+原理+对比分析
无监督学习 聚类算法1:经典的K means纵使簇类需要专家系统与先验知识定义,K means 也依旧在当前的机器学习与深度学习使用,例如各种数据分析以及深度学习全连接以后的输出层网络连接,它与他的衍生算法,例如K means ++ ,在聚类算法中一直是老大地位,因为他的速度是极快的,相比其他算法在计算簇间相似度与簇内相似度中的速度较慢;所以就出现了很多算法,是来优化K means 家族的,例如在簇的寻找上,使用DBACAN等层次聚类算法用来给K means ++ 寻找最合适的簇个数,在此基础上,DBA原创 2020-10-19 11:36:44 · 12027 阅读 · 25 评论 -
【解读】声网 Agora音视频技术与AI方案解决
声网 Agora原创声明,cv调包侠 50+新增数据中心 300%全网带宽容量上涨 中国区支持百万大频道动态扩展能力 海外大频道扩容时间缩短50% 日分钟数超过6亿 支持 5G 网络下高清、大码率视频传输 移动端超分、感知视频编码、AI 降噪等新技术落地 岁月不待人,2019年,已经过去。 我们和你一样, 在通往实时互联网的路上狂奔,原创 2020-10-11 17:07:25 · 12222 阅读 · 2 评论 -
手把手教学基于深度学习的遥感影像倾斜框算法训练与分析
以DOTA遥感影像数据集为例,选用R3DET算法为例子基本修改下载源码:github:https://github.com/Thinklab-SJTU/R3Det_Tensorflowgit clone https://github.com/Thinklab-SJTU/R3Det_Tensorflow.git根据他的readme可以很快的运行成功例如:先下载预训练权重,推荐下载resnet101(见readme)然后编译源码:建议在ubuntu做,若是没有环境,那就在阿里云上走,那里可以直原创 2020-10-09 20:59:44 · 11040 阅读 · 51 评论 -
实时 摔倒识别 /运动分析/打架等异常行为识别/控制手势识别等所有行为识别全家桶 原理 + 代码 + 数据+ 模型 开源!
文章目录一、 基本过程和思想二 、视频理解还有哪些优秀框架三、效果体验~使用手势:python run_gesture_recognition.py健身_跟踪器:卡路里计算三、训练自己数据集步骤然后,打开这个网址:点击一下start new project但是官方的制作方法是有着严重bug的~我们该怎么做呢!原代码解读大家好,我是cv君,很多大创,比赛,项目,工程,科研,学术的炼丹术士问我上述这些识别,该怎么做,怎么选择框架,今天可以和大家分析一下一些方案:用单帧目标检测做的话,前后语义相关性很差(也有原创 2021-03-02 15:28:37 · 62691 阅读 · 313 评论