题目地址:
https://www.luogu.com.cn/problem/P1028
题目描述:
我们要求找出具有下列性质数的个数(包含输入的正整数
n
n
n)。先输入一个正整数
n
(
n
≤
1000
)
n(n≤1000)
n(n≤1000),然后对此正整数按照如下方法进行处理:不作任何处理;在它的左边加上一个正整数,但该正整数不能超过原数的一半;加上数后,继续按此规则进行处理,直到不能再加正整数为止。
输入格式:
1
1
1个正整数
n
(
n
≤
1000
)
n(n≤1000)
n(n≤1000)
输出格式:
1
1
1个整数,表示具有该性质数的个数。
设 f ( n ) f(n) f(n)为输入为 n n n时的结果。得: f ( n ) = 1 + ∑ i = 1 ⌊ i 2 ⌋ f ( i ) f(n)=1+\sum_{i=1}^{\lfloor \frac{i}{2} \rfloor}f(i) f(n)=1+i=1∑⌊2i⌋f(i)注意,这里不计入 0 0 0。举例说明:对于 6 6 6,我们可以产生出这样几个数字: 6 , 16 , 26 , 126 , 36 , 136 6,16,26,126,36,136 6,16,26,126,36,136,一共 6 6 6个结果。代码如下:
#include <iostream>
using namespace std;
int main() {
int n;
cin >> n;
// 表示以k结尾的数字能产生多少个结果
int f[1001] = {0};
for (int i = 1; i <= n; ++i) {
f[i] = 1;
for (int j = 1; j <= i / 2; ++j)
f[i] += f[j];
}
cout << f[n] << endl;
return 0;
}
时间复杂度 O ( n 2 ) O(n^2) O(n2),空间 O ( n ) O(n) O(n)。