题目地址:
https://leetcode.com/problems/insert-into-a-binary-search-tree/
在二叉搜索树里插入一个值。首先要明确,在一个二叉搜索树中插入一个值val,其定义是什么。
从数学上来讲,二叉树本质上是个有序的二叉根树。集合论上,任何一个图都可以表示为顶点上的二元关系集。而插入一个节点或者修改一个节点,本质上是更新这个二元关系集。所以在执行插入或者修改操作的时候,一定要注意这个关系集有没有被修改,否则就是无用功。
现在我们来考虑,在二叉搜索树中插入一个值val的定义。这里的定义是递归的:
1、若树为空树,则新建一个node其值为val,并将其作为树根;
2、否则,若val小于树根,则向其左子树插入val;若val大于树根,则向其右子树插入val;若等于,则不插入。
需要注意的是,新建一个node的行为,对关系集并没有做修改,只是对顶点集作了修改,也就是给顶点集新加了一个顶点。而只有树空的时候,可以只对顶点集进行修改,因为这个时候二元关系集并没有变化(也就是没有产生新的边);如果树不空,这就要对二元关系集进行修改,在这个case里,就是加上一条新的边。这一点在代码中要有所体现。
法1:DFS。
public class Solution {
public TreeNode insertIntoBST(TreeNode root, int val) {
if (root == null) {
return new TreeNode(val);
}
if (val < root.val) {
// 这里主要考虑的是root.left == null的情况,利用此method的signature,给BST加上一条新边
root.left = insertIntoBST(root.left, val);
} else if (val > root.val) {
root.right = insertIntoBST(root.right, val);
}
return root;
}
}
class TreeNode {
int val;
TreeNode left, right;
TreeNode(int x) {
val = x;
}
}
时空复杂度 O ( h ) O(h) O(h)。 h h h为树的高度。最差情况在最下面一层叶子插入。
法2:
public class Solution {
public TreeNode insertIntoBST(TreeNode root, int val) {
if (root == null) {
return new TreeNode(val);
}
TreeNode cur = root;
while (true) {
if (val < cur.val) {
if (cur.left == null) {
cur.left = new TreeNode(val);
}
cur = cur.left;
} else if (val > cur.val) {
if (cur.right == null) {
cur.right = new TreeNode(val);
}
cur = cur.right;
} else {
return root;
}
}
}
}
时间复杂度 O ( h ) O(h) O(h),空间 O ( 1 ) O(1) O(1)。