题目地址:
https://leetcode.com/problems/jump-game/
给定一个长 n n n的数组 a a a,每个数都非负,表示在当前位置可以向后跳的最大步数。现要求从下标为 0 0 0的地方开始跳,如果位于 a [ i ] a[i] a[i]的时候,每次只能跳不大于 a [ i ] a[i] a[i]的步数。问是否可以跳到数组最后一个位置。
基本思路是BFS,我们只需要遍历数组的时候不断更新能跳到的最远的下标是谁即可,一旦发现更新的过程中,这个下标大于等于 n − 1 n-1 n−1了,就直接返回true,否则最后返回false。代码如下:
class Solution {
public:
bool canJump(vector<int>& a) {
int n = a.size();
int l = 0, r = 0, far = 0;
while (l <= r) {
for (int i = l; i <= r; i++) {
far = max(far, i + a[i]);
if (far >= n - 1) return true;
}
l = r + 1;
r = far;
}
return false;
}
};
时间复杂度 O ( n ) O(n) O(n),空间 O ( 1 ) O(1) O(1)。
算法详细解释:
假设数组是
(
a
0
,
a
1
,
.
.
.
,
a
n
)
(a_0,a_1,...,a_n)
(a0,a1,...,an),把整个数组想象成一个图的结构,
a
0
a_0
a0就是出发节点,从
a
0
a_0
a0能到达的点(除去自己)就是
a
0
a_0
a0的邻居节点(也是至少
1
1
1步到达的节点,我们可以称为”第
1
1
1层邻居“),然后对于每个
a
0
a_0
a0的邻居,除开“本层”的节点后,
a
0
a_0
a0的所有邻居能到达的节点,就是至少
2
2
2步能到达的节点,可以称为”第
2
2
2层邻居“,这样一直下去。这其实就是图上的BFS。
far
实际上存储的是在遍历”本层“的时候,本层所能到达的最远位置。很显然一旦这个最远位置能够碰到数组末尾,就说明了末尾是可达的了(路径的构造只需要从终点倒推回去即可)。而代码的正确性就很显然了。
注1:此题还有比较慢的动态规划算法,这里就省略了。
注2:很多文章说这题的算法是”贪心法“,其实这里的贪心,本质上用的其实是BFS求最短路的思路。如果用图论的思想来建模,整个题目会变得非常清晰明了。