【Leetcode】133. Clone Graph

本文介绍了一种使用深度优先搜索(DFS)算法深拷贝图结构的方法。通过使用哈希映射存储原图节点与新图节点之间的对应关系,确保了每个节点仅被复制一次,避免了无限递归。此方法的时间复杂度为O(V+E),空间复杂度为O(V)。
摘要由CSDN通过智能技术生成

题目地址:

https://leetcode.com/problems/clone-graph/

深拷贝一个图。

思路是DFS。开一个Hashmap,存储原图顶点和新图顶点的对应关系。接着对图进行DFS即可。代码如下:

/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> neighbors;
    Node() {
        val = 0;
        neighbors = vector<Node*>();
    }
    Node(int _val) {
        val = _val;
        neighbors = vector<Node*>();
    }
    Node(int _val, vector<Node*> _neighbors) {
        val = _val;
        neighbors = _neighbors;
    }
};
*/

class Solution {
 public:
  Node* cloneGraph(Node* node) {
    if (!node) return nullptr;
    unordered_map<Node*, Node*> mp;
    mp[nullptr] = nullptr;
    return dfs(node, mp);
  }
  
  // 返回原图中的node对应的新图的node
  Node* dfs(Node* node, unordered_map<Node*, Node*>& mp) {
    // 如果对应的新图的node已经建出来了,就直接返回
	if (auto it = mp.find(node); it != mp.end()) return it->second;
    // 如果没new出来,就将其new出来
    mp[node] = new Node(node->val);
   	// new出来以后,将其邻居加入进去
    for (auto* ne : node->neighbors) mp[node]->neighbors.push_back(dfs(ne, mp));
	// 返回对应的新图的node
    return mp[node];
  }
};

时间复杂度 O ( V + E ) O(V+E) O(V+E),空间复杂度 O ( V ) O(V) O(V)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值