【Leetcode】221. Maximal Square

题目地址:

https://leetcode.com/problems/maximal-square/

给定一个二维 0 − 1 0-1 01矩阵 A A A,求其中最大的全由 1 1 1构成的正方形的面积。

f [ i ] [ j ] f[i][j] f[i][j]表示由 A [ i − 1 ] [ j − 1 ] A[i-1][j-1] A[i1][j1]为右下角的面积最大的 1 1 1矩阵的边长(即 A A A的前 i i i行和 j j j列的子矩阵中,以右下角为顶点的最大的 1 1 1矩阵的边长)。如果 A [ i − 1 ] [ j − 1 ] = 0 A[i-1][j-1]=0 A[i1][j1]=0那显然 f [ i ] [ j ] = 0 f[i][j]=0 f[i][j]=0。否则,首先显然 f [ i ] [ j ] ≤ min ⁡ { f [ i − 1 ] [ j ] + 1 , f [ i ] [ j − 1 ] + 1 , f [ i − 1 ] [ j − 1 ] + 1 } = min ⁡ { f [ i − 1 ] [ j ] , f [ i ] [ j − 1 ] , f [ i − 1 ] [ j − 1 ] } + 1 f[i][j]\le \min\{f[i-1][j]+1, f[i][j-1]+1,f[i-1][j-1]+1\}=\min\{f[i-1][j], f[i][j-1],f[i-1][j-1]\}+1 f[i][j]min{f[i1][j]+1,f[i][j1]+1,f[i1][j1]+1}=min{f[i1][j],f[i][j1],f[i1][j1]}+1。设 x = min ⁡ { f [ i − 1 ] [ j ] , f [ i ] [ j − 1 ] , f [ i − 1 ] [ j − 1 ] } x=\min\{f[i-1][j], f[i][j-1],f[i-1][j-1]\} x=min{f[i1][j],f[i][j1],f[i1][j1]},可以看出 A [ i − 1 − x ] [ j − 1 − x ] = 1 A[i-1-x][j-1-x]=1 A[i1x][j1x]=1,所以 f [ i ] [ j ] ≥ x + 1 f[i][j]\ge x+1 f[i][j]x+1。所以 f [ i ] [ j ] = x + 1 f[i][j]=x+1 f[i][j]=x+1。代码如下:

class Solution {
 public:
  int maximalSquare(vector<vector<char>>& A) {
    int res = 0, m = A.size(), n = A[0].size();
    int f[m + 1][n + 1];
    memset(f, 0, sizeof f);
    for (int i = 1; i <= m; i++)
      for (int j = 1; j <= n; j++) {
        if (A[i - 1][j - 1] != '0') {
          f[i][j] = min(f[i - 1][j - 1], min(f[i - 1][j], f[i][j - 1])) + 1;
          res = max(res, f[i][j]);
        }
      }

    return res * res;
  }
};

时空复杂度 O ( m n ) O(mn) O(mn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值