【Lintcode】591. Connecting Graph III

题目地址:

https://www.lintcode.com/problem/connecting-graph-iii/description

给定 n n n个顶点标号为 1 ∼ n 1\sim n 1n,再给定若干次操作,每次操作会将两个顶点用无向边连起来。要求动态返回连通分量个数。

并查集天然适合这个问题。代码如下:

public class ConnectingGraph3 {
    
    class UnionFind {
        private int[] parent, rank;
        // group记录有多少个等价类
        int group;
        
        public UnionFind(int n) {
            parent = new int[n];
            rank = new int[n];
            for (int i = 0; i < n; i++) {
                parent[i] = i;
                rank[i] = 1;
            }
            
            group = n;
        }
        
        public int find(int p) {
            if (p != parent[p]) {
                parent[p] = find(parent[p]);
            }
            
            return parent[p];
        }
        
        public void union(int p, int q) {
            int pRoot = find(p), qRoot = find(q);
            if (pRoot == qRoot) {
                return;
            }
            
            if (rank[pRoot] < rank[qRoot]) {
                parent[pRoot] = qRoot;
            } else if (rank[pRoot] > rank[qRoot]) {
                parent[qRoot] = pRoot;
            } else {
                parent[pRoot] = qRoot;
                rank[qRoot]++;
            }
            
            group--;
        }
    }
    
    private UnionFind uf;
    
    /**
     * @param a: An integer
     * @param b: An integer
     * @return: nothing
     */
    public ConnectingGraph3(int n) {
        // initialize your data structure here.
        uf = new UnionFind(n);
    }
    
    public void connect(int a, int b) {
        // write your code here
        uf.union(a - 1, b - 1);
    }
    
    /**
     * @return: An integer
     */
    public int query() {
        // write your code here
        return uf.group;
    }
}

connect的时间复杂度 O ( log ⁡ ∗ n ) O(\log^*n) O(logn),空间 O ( n ) O(n) O(n) n n n为顶点个数)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值