- Connecting Graph
Given n nodes in a graph labeled from 1 to n. There is no edges in the graph at beginning.
You need to support the following method:
connect(a, b), add an edge to connect node a and node b`.
query(a, b), check if two nodes are connected
Example
5 // n = 5
query(1, 2) return false
connect(1, 2)
query(1, 3) return false
connect(2, 4)
query(1, 4) return true
思路:最经典的并查集。
注意
1) 凡是这种动态的加入,查询某个集合的问题都可以考虑并查集(但是如果集合里面的元素有断开的情况,不能用并查集,这种情况可能可以用dynamic set之类的东西,但很复杂)。
路径压缩不是必须的。但用了路径压缩以后,速度快了很多。时间复杂度降到O(log*n),约为O(1)。
2) 路径压缩也可以用下面的尾递归算法,更简洁。
int find(int x) {
if (father[x] == x)
return x;
return father[x] = find(father[x]);
}
代码如下:
class ConnectingGraph {
public:
/*
* @param n: An integer
*/ConnectingGraph(int n) {
// do intialization if necessary
father.resize(n + 1);
for (int i = 1; i <= n; ++i)
father[i] = i;
}
/*
* @param a: An integer
* @param b: An integer
* @return: nothing
*/
void connect(int a, int b) {
int rootA = find(a);
int rootB = find(b);
if (rootA != rootB) {
father[rootA] = rootB;
}
}
/*
* @param a: An integer
* @param b: An integer
* @return: A boolean
*/
bool query(int a, int b) {
return find(a) == find(b);
}
private:
vector<int> father;
int find(int x) {
int x2 = x;
if (father[x] == x) return x;
while(father[x] != x) {
x = father[x];
}
//with path compression
while(x2 != x) {
int temp = father[x2];
father[x2] = x;
x2 = temp;
}
return x;
}
};