题目地址:
https://leetcode.com/problems/basic-calculator/
给定一个中缀表达式 s s s,求其值。表达式中只含非负整数,加减乘除和左右小括号,减号可以作为负号出现。
具体算法参考https://blog.csdn.net/qq_46105170/article/details/106209367。注意这题有负号,我们需要在负号出现的地方前面加个 0 0 0。可以先预处理一下字符串 s s s,开另一个字符串 t t t来表示最终要处理的表达式。略过空格。判断负号的方式是,如果 t t t为空或者 t t t结尾是左括号,则说明当前的减号为负号。代码如下:
class Solution {
public:
int calculate(string t) {
string s;
// 预处理一下t
for (int i = 0; i < t.size(); i++) {
if (t[i] == ' ') continue;
if (t[i] == '-' && (s.empty() || s.back() == '(')) s += '0';
s += t[i];
}
unordered_map<char, int> mp{
{'(', 0}, {'+', 1}, {'-', 1}, {'*', 2}, {'/', 2}};
stack<int> stk;
stack<char> ops;
for (int i = 0; i < s.size(); i++) {
if (s[i] == '(') ops.push('(');
else if (isdigit(s[i])) {
int x = 0, j = i;
while (j < s.size() && isdigit(s[j])) x = x * 10 + (s[j++] - '0');
stk.push(x);
i = j - 1;
} else if (s[i] == ')') {
while (ops.top() != '(') calc(stk, ops);
ops.pop();
} else {
while (ops.size() && mp[ops.top()] >= mp[s[i]]) calc(stk, ops);
ops.push(s[i]);
}
}
while (ops.size()) calc(stk, ops);
return stk.top();
}
void calc(stack<int>& stk, stack<char>& ops) {
int b = stk.top(); stk.pop();
int a = stk.top(); stk.pop();
char op = ops.top(); ops.pop();
switch (op) {
case '+': stk.push(a + b); break;
case '-': stk.push(a - b); break;
case '*': stk.push(a * b); break;
case '/': stk.push(a / b); break;
}
}
};
时空复杂度 O ( n ) O(n) O(n)。
我们可以直接通过维护一个状态来做。整数关于加法和乘法形成一个环。初始状态为 ( 0 , 1 ) (0,1) (0,1)(分别是加法单位元和乘法单位元,这个项的含义是 0 + 1 # 0+1\# 0+1#, # \# #的意思是下面的运算符还未定义),接着我们遍历表达式,遍历的时候得到每个项和其前面的运算符。最开始的项的运算符定义为乘法。设当前的状态为 ( a , b ) (a,b) (a,b),如果下一项的运算符是乘除法,则说明前面遍历完留的末尾数需要参与乘除运算,例如如果下一项是 x x x并且是乘法,则状态变为 ( a , b × x ) (a,b\times x) (a,b×x),如果是除法则为 ( a , b / x ) (a,b/x) (a,b/x);如果下一项的运算符是加减法,则说明前面遍历完的项可以合并了,如果是加法,则状态变为 ( a + b , x ) (a+b, x) (a+b,x),否则变为 ( a + b , − x ) (a+b, -x) (a+b,−x)。如果遇到括号,则递归求解下一项。最后遍历完之后,将两维相加即得答案。代码如下:
class Solution {
public:
int dfs(int &k, string& s) {
int a = 0, b = 1;
char op = '*';
static auto f = [](int &a, int &b, int x, char op) {
if (op == '+') a += b, b = x;
else if (op == '-') a += b, b = -x;
else if (op == '*') b *= x;
else b /= x;
};
while (k < s.size() && s[k] != ')') {
if (s[k] == ' ') {
k++;
continue;
}
if (s[k] == '(') {
int x = dfs(++k, s);
k++;
f(a, b, x, op);
} else if (isdigit(s[k])) {
int x = 0;
while (k < s.size() && isdigit(s[k]))
x = x * 10 + (s[k++] - '0');
f(a, b, x, op);
} else op = s[k++];
}
return a + b;
}
int calculate(string t) {
string s;
for (int i = 0; i < t.size(); i++) {
if (t[i] == ' ') continue;
if (t[i] == '-' && (s.empty() || s.back() == '(')) s += '0';
s += t[i];
}
int k = 0;
return dfs(k, s);
}
};
时空复杂度一样。