【Lintcode】1366. Directed Graph Loop

题目地址:

https://www.lintcode.com/problem/directed-graph-loop/description

给定一个有向图,判断其是否有环。图有 n n n个顶点,每个顶点的标号为 1 ∼ n 1\sim n 1n

思路是DFS,先用邻接表建图,然后进行DFS。用一个数组标记每个顶点的访问状态,每次从一个顶点DFS的时候,标记为 0 0 0的顶点表示当前这次DFS经过的顶点,标记为 − 1 -1 1的表示从未访问过的顶点,标记为 1 1 1的表示本次DFS全部结束后已经访问过的顶点(包括之前DFS访问过的顶点)。如果在某次从一个顶点出发的时候,发现某个邻接点标记为了 0 0 0,则说明有环;如果某个邻接点标记为 − 1 -1 1则对其进行DFS;回溯之前要把遍历过的顶点都标记为 1 1 1。代码如下:

import java.util.*;

public class Solution {
    /**
     * @param start: The start points set
     * @param end:   The end points set
     * @return: Return if the graph is cyclic
     */
    public boolean isCyclicGraph(int[] start, int[] end) {
        // Write your code here
        if (start == null || start.length == 0) {
            return false;
        }
        // 算一下一共多少个顶点
        int n = 0;
        for (int i = 0; i < start.length; i++) {
            n = Math.max(n, start[i]);
            n = Math.max(n, end[i]);
        }
        // 用邻接表建图
        Map<Integer, List<Integer>> graph = buildGraph(start, end);
        // 先把所有顶点都标记为未访问
        int[] visited = new int[n + 1];
        Arrays.fill(visited, -1);

        for (int i = 1; i <= n; i++) {
        	// 如果标号为i的顶点未访问,则对其进行DFS
            if (visited[i] == -1 && dfs(graph, i, visited)) {
                return true;
            }
        }
        
        return false;
    }
    
    // 从cur开始进行DFS,返回是否发现了环
    private boolean dfs(Map<Integer, List<Integer>> graph, int cur, int[] visited) {
        visited[cur] = 0;
        List<Integer> nexts = graph.get(cur);
        if (nexts != null) {
            for (int next : graph.get(cur)) {
                if (visited[next] == 0) {
                    return true;
                }
                if (visited[next] == -1 && dfs(graph, next, visited)) {
                    return true;
                }
            }
        }
        
        visited[cur] = 1;
        return false;
    }
    
    private Map<Integer, List<Integer>> buildGraph(int[] start, int[] end) {
        Map<Integer, List<Integer>> graph = new HashMap<>();
        for (int i = 0; i < start.length; i++) {
            graph.putIfAbsent(start[i], new ArrayList<>());
            graph.get(start[i]).add(end[i]);
        }
        
        return graph;
    }
}

时空复杂度 O ( V + E ) O(V+E) O(V+E)

使用C++实现有向图的邻接矩阵,以及可达矩阵的计算算法。 请完成Project05.cpp中DirectedGraph类的成员函数,具体要求如下: DirectedGraph类: 用来表示一个有向图。 成员变量: m_AdjMat:邻接矩阵 m_ReachabilityMat:可达矩阵 成员函数: DirectedGraph():默认构造函数,构造一个空图。 ~DirectedGraph():析构函数 DirectedGraph(string filepath):解析文件filepath,构造一个DirectedGraph对象。 filepath文件格式与项目四相同,但本项目的图为有向图DirectedGraph(const Graph & graph):复制构造函数 operator=(const Graph & graph):赋值运算符 ClearGraph():清空图的邻接矩阵和可达矩阵。 OutputGraph():输出图的邻接矩阵 operator*(const DirectedGraph & graph): 乘法运算符,用于实现可达矩阵运算中的矩阵逻辑乘 DirectedGraph Pow(int power):邻接矩阵的整数次幂。 用法如下: DirectedGraph a; a = a.Pow(5); 即a的5次幂,相当于a = a * a * a * a * a; 注意要考虑0次幂的情况。 该函数适合以递归实现。 DirectedGraph MatOr(DirectedGraph graph):矩阵逐元素的逻辑或运算。 例如: 1 0 0 1 与 0 1 1 0 运算后的结果为 1 1 1 1 void CalcReachabilityMat():计算可达矩阵,要求该函数基于*运算符和Pow函数实现 void OutputReachabilityMat():输出可达矩阵 IsConnected(int src, int dst):基于可达矩阵判断从节点src与dst之间是否存在通路,如存在返回真,否则返回假
05-30
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值