题目地址:
https://leetcode.com/problems/as-far-from-land-as-possible/
给定一个 0 − 1 0-1 0−1矩阵 A A A,给定其中的坐标 ( x , y ) (x,y) (x,y),与其曼哈顿距离最近的 1 1 1和这个点的曼哈顿距离表示为 f ( x , y ) f(x,y) f(x,y),要求 max { f ( x , y ) ∣ A [ x ] [ y ] = 0 } \max\{f(x,y)|A[x][y]=0\} max{f(x,y)∣A[x][y]=0}。若矩阵只含 0 0 0或者只含 1 1 1则返回 − 1 -1 −1。
思路是BFS。先将所有的 1 1 1的坐标加入队列,然后一层一层地对每个 1 1 1向四个方向扩展,每扩展一格就记录步数,并标记为扩展过,直到最后一个 0 0 0被扩展到,此时扩展的步数即为所求。代码如下:
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
public class Solution {
public int maxDistance(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) {
return -1;
}
// 将所有的1的坐标加入队列
Queue<int[]> queue = new LinkedList<>();
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j] == 1) {
queue.offer(new int[]{i, j});
}
}
}
// 特判,如果只含0或者只含1,则返回-1
if (queue.isEmpty() || queue.size() == grid.length * grid[0].length) {
return -1;
}
int res = -1;
// 每次循环,都将队列里的坐标全部取出,并且每取出一个,
// 就将其四周的0的坐标加入队列,并将0改为1
while (!queue.isEmpty()) {
res++;
// 由于要分层遍历,所以要事先记录队列的size
int size = queue.size();
for (int i = 0; i < size; i++) {
int[] cur = queue.poll();
int x = cur[0], y = cur[1];
for (int[] next : getNexts(x, y, grid)) {
queue.offer(next);
grid[next[0]][next[1]] = 1;
}
}
}
return res;
}
// 返回所有与(x, y)四个方向相邻的0的坐标
private List<int[]> getNexts(int x, int y, int[][] grid) {
List<int[]> nexts = new ArrayList<>();
int[] d = {1, 0, -1, 0, 1};
for (int i = 0; i < 4; i++) {
int nextX = x + d[i], nextY = y + d[i + 1];
if (inBound(nextX, nextY, grid) && grid[nextX][nextY] == 0) {
nexts.add(new int[]{nextX, nextY});
}
}
return nexts;
}
private boolean inBound(int x, int y, int[][] grid) {
return 0 <= x && x < grid.length && 0 <= y && y < grid[0].length;
}
}
时空复杂度 O ( m n ) O(mn) O(mn)。