【Lintcode】931. Median of K Sorted Arrays

题目地址:

https://www.lintcode.com/problem/median-of-k-sorted-arrays/description

给定 k k k个升序数组,求全部数字的中位数。若总共偶数个数字,则返回中间两个数的平均值。如果总共没有数字,则返回 0 0 0

直接把所有数存下来然后排个序即可。代码如下:

import java.util.Arrays;

public class Solution {
    /**
     * @param nums: the given k sorted arrays
     * @return: the median of the given k sorted arrays
     */
    public double findMedian(int[][] nums) {
        // write your code here
        if (nums == null || nums.length == 0) {
            return 0;
        }
        
        int len = 0;
        for (int i = 0; i < nums.length; i++) {
            len += nums[i].length;
        }
        
        int find1 = -1, find2 = -1;
        if (len % 2 != 0) {
            find1 = len / 2;
        } else {
            find1 = len / 2 - 1;
            find2 = find1 + 1;
        }
        
        double[] arr = new double[len];
        for (int i = 0, idx = 0; i < nums.length; i++) {
            for (int j = 0; j < nums[i].length; j++) {
                arr[idx++] = nums[i][j];
            }
        }
    
        if (arr.length == 0) {
            return 0;
        }
        
        Arrays.sort(arr);
        int count = 0;
        double res = 0;
        if (find1 != -1) {
            res += arr[find1];
            count++;
        }
        if (find2 != -1) {
            res += arr[find2];
            count++;
        }
        
        return res / count;
    }
}

时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn) n n n为数字总个数,空间 O ( n ) O(n) O(n)

注解:
这里还有一种办法,就是用二分答案的办法求一下第 k k k小的数。这样的算法时间复杂度是 O ( log ⁡ r ∑ log ⁡ n i ) O(\log r\sum \log n_i) O(logrlogni) r r r是数据范围, n i n_i ni是每个数组的长度。不过写起来略麻烦。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值