【Leetcode】1631. Path With Minimum Effort

题目地址:

https://leetcode.com/problems/path-with-minimum-effort/

给定一个 m m m n n n列二维矩阵,要从左上角 ( 0 , 0 ) (0,0) (0,0)位置走到右下角 ( m − 1 , n − 1 ) (m-1,n-1) (m1,n1)位置,每一步可以走上下左右四个方向(当然不能走出界),使得该路径的所有相邻点的数值差的绝对值的最大值最小。返回这个最小值。为了方便理解,这里举个例子:在这里插入图片描述
对于上面的图,绿色所显示的路径中,所有相邻节点的差的绝对值中最大的是 ∣ 5 − 3 ∣ |5-3| ∣53∣等于 2 2 2,并且任意别的路径,都无法取到更小的差。

法1:最小生成树。我们可以将整个矩阵看成一个带权无向图,每个坐标看成一个点,两个坐标的数值差看成是边权,这样问题就变为,所有从左上到右下的路径中,最大边权最小的路径的那个最小边权是多少。思路和证明参考https://blog.csdn.net/qq_46105170/article/details/108481056,大致是这样做的:

用最小生成树的Kruskal算法。先将边按照权值排序,然后一条一条地将边加上去,一旦发现左上角和右下角连通了之后,正在加的那条边的权值就是答案(判断连通需要用到并查集)。

代码如下:

class Solution {
 public:
  struct Edge {
    int x, y, w;
  };
  vector<int> p;
  int minimumEffortPath(vector<vector<int>>& hs) {
    int m = hs.size(), n = hs[0].size(), mn = m * n;
    p.resize(mn);
    for (int i = 0; i < mn; i++) p[i] = i;
    vector<Edge> v;
    auto f = [&](int x, int y) { return x * n + y; };
    for (int i = 0; i < m; i++)
      for (int j = 0; j < n; j++) {
        if (i + 1 < m)
          v.push_back({f(i + 1, j), f(i, j), abs(hs[i + 1][j] - hs[i][j])});
        if (j + 1 < n)
          v.push_back({f(i, j + 1), f(i, j), abs(hs[i][j + 1] - hs[i][j])});
      }
    sort(v.begin(), v.end(), [&](auto& e1, auto& e2) { return e1.w < e2.w; });
    auto merge = [&](int x, int y) {
      int px = find(p[x]), py = find(y);
      if (px == py) return;
      p[px] = py;
    };
    for (int i = 0; i < v.size(); i++) {
      int x = v[i].x, y = v[i].y, w = v[i].w;
      merge(x, y);
      if (find(f(0, 0)) == find(f(m - 1, n - 1))) return w;
    }

    return 0;
  }

  int find(int x) { return p[x] == x ? x : p[x] = find(p[x]); }
};

时间复杂度 O ( m n log ⁡ ( m n ) ) O(mn\log (mn)) O(mnlog(mn))(排序的时间),空间 O ( m n ) O(mn) O(mn)

法2:修改版Dijkstra。Dijkstra算法求的是非负权无向图的最短路问题,而这题相当于是将一条路的长度定义为其所有边边权的最大值,接下来模仿Dijkstra算法的方法用最小堆来做即可。算法正确性证明和Dijkstra算法求最短路类似,只需注意,当一条路径增加一条边的时候,其最大边权不会变的更小。代码如下:

import java.util.Arrays;
import java.util.PriorityQueue;

public class Solution {
    
    // 这个类里的x和y是坐标,maxDiff指的是到这个坐标的路径的最大边权
    class Pair {
        int x, y, maxDiff;
        
        public Pair(int x, int y, int maxDiff) {
            this.x = x;
            this.y = y;
            this.maxDiff = maxDiff;
        }
    }
    
    public int minimumEffortPath(int[][] heights) {
    	// 特判一些显然的情况
        if (heights == null || heights.length == 0 || heights[0].length == 0) {
            return 0;
        }
        int m = heights.length, n = heights[0].length;
        if (m == 1 && n == 1) {
            return 0;
        }
        
        // 按到达pair的路径的最大边权来排优先级,最大边权小者优先
        PriorityQueue<Pair> minHeap = new PriorityQueue<>((p1, p2) -> Integer.compare(p1.maxDiff, p2.maxDiff));
        boolean[][] visited = new boolean[m][n];
        
        // 记录到每个位置的所有路径中最大边权最小的那个路径的最大边权
        int[][] minMaxdiff = new int[m][n];
        
        // 初始化为正无穷
        for (int i = 0; i < minMaxdiff.length; i++) {
            Arrays.fill(minMaxdiff[i], Integer.MAX_VALUE);
        }
        
        int[] dir = {1, 0, -1, 0, 1};
        
        minHeap.offer(new Pair(0, 0, 0));
		minMaxdiff[0][0] = 0;

        while (!minHeap.isEmpty()) {
            Pair cur = minHeap.poll();
            int x = cur.x, y = cur.y;
            if (x == m - 1 && y == n - 1) {
                return minMaxdiff[m - 1][n - 1];
            }
            
            // 标记一下已求出
            visited[x][y] = true;
            
            for (int i = 0; i < 4; i++) {
                int nextX = x + dir[i], nextY = y + dir[i + 1];
                if (inBound(nextX, nextY, m, n) && !visited[nextX][nextY]) {
                    int curDiff = Math.abs(heights[nextX][nextY] - heights[x][y]);
                    int maxDiff = Math.max(curDiff, cur.maxDiff);
                    
                    if (minMaxdiff[nextX][nextY] > maxDiff) {
                        minMaxdiff[nextX][nextY] = maxDiff;
                        minHeap.offer(new Pair(nextX, nextY, maxDiff));
                    }
                }
            }
        }
        
        return -1;
    }
    
    private boolean inBound(int x, int y, int m, int n) {
        return 0 <= x && x < m && 0 <= y && y < n;
    }
}

时间复杂度 O ( m n log ⁡ ( m n ) ) O(mn\log (mn)) O(mnlog(mn))(入堆出堆的时间需要 O ( log ⁡ ( m n ) ) O(\log (mn)) O(log(mn))),空间 O ( m n ) O(mn) O(mn)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值