【Lintcode】1447. Calculation The Sum of Path

题目地址:

https://www.lintcode.com/problem/calculation-the-sum-of-path/description

给定一个 l l l w w w列的二维矩阵,从左上到右下角,规定必须经过某些点,并且每步只能向右或者向下走。问一共多少种走法。答案模 1 0 9 + 7 10^9+7 109+7返回。注意,题目里的下标都是从 1 1 1开始的。

先将所有的点从上到下从左到右排个序,然后两两之间算一下走法数,一个个乘上去即可。代码如下:

import java.util.Arrays;

public class Solution {
    /**
     * @param l:      The length of the matrix
     * @param w:      The width of the matrix
     * @param points: three points
     * @return: The sum of the paths sum
     */
    public long calculationTheSumOfPath(int l, int w, Point[] points) {
        // Write your code here
        Arrays.sort(points, (p1, p2) -> p1.x != p2.x ? Integer.compare(p1.x, p2.x) : Integer.compare(p1.y, p2.y));
        
        Point start = new Point(0, 0), end = new Point(l - 1, w - 1);
        
        long res = 0, MOD = (long) (1E9 + 7);
        for (int i = 0; i < points.length; i++) {
            Point point = points[i];
            point.x--;
            point.y--;
            
            if (i == 0) {
                res = compute(start, point, MOD);
            } else {
                res *= compute(points[i - 1], point, MOD);
            }
            
            res %= MOD;
        }
        
        res *= compute(points[points.length - 1], end, MOD);
        
        return res % MOD;
    }
    
    private long compute(Point start, Point end, long MOD) {
        int m = end.x - start.x + 1, n = end.y - start.y + 1;
        // 可以滚动数组优化
        long[][] dp = new long[2][n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (i == 0 || j == 0) {
                    dp[i & 1][j] = 1;
                } else {
                    dp[i & 1][j] = dp[i - 1 & 1][j] + dp[i & 1][j - 1];
                }
                
                dp[i & 1][j] %= MOD;
            }
        }
        
        return dp[m - 1 & 1][n - 1];
    }
}

class Point {
    int x, y;
    
    public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }
}

时间复杂度 O ( l w + p log ⁡ p ) O(lw+p\log p) O(lw+plogp) p p p是点数,空间 O ( w ) O(w) O(w)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值