题目地址:
https://leetcode.com/problems/minimum-number-of-removals-to-make-mountain-array/
给定一个数组 A A A,问至少删除几个元素,就能得到一个”山峰数组“。一个数组 B B B是山峰数组指 ∃ i , 0 < i < l B − 1 \exists i,0<i<l_B-1 ∃i,0<i<lB−1使得 B [ 0 ] < . . . < B [ i ] > . . . > B [ l B − 1 ] B[0]<...<B[i]>...>B[l_B-1] B[0]<...<B[i]>...>B[lB−1]。
思路是动态规划。枚举 A [ i ] A[i] A[i]作为山顶,即求出以 A [ i ] A[i] A[i]结尾的最长上升子序列的长度,和以 A [ i ] A[i] A[i]开头的最长下降子序列的长度,两个长度加起来减去 1 1 1就是以 A [ i ] A[i] A[i]作为山顶的最长山峰数组长度。而最长上升下降子序列可以用动态规划做。代码如下:
public class Solution {
public int minimumMountainRemovals(int[] nums) {
int[] ldp = new int[nums.length], rdp = new int[nums.length];
for (int i = 0; i < nums.length; i++) {
ldp[i] = 1;
for (int j = 0; j < i; j++) {
if (nums[j] < nums[i]) {
ldp[i] = Math.max(ldp[i], ldp[j] + 1);
}
}
}
for (int i = nums.length - 1; i >= 0; i--) {
rdp[i] = 1;
for (int j = i + 1; j < nums.length; j++) {
if (nums[j] < nums[i]) {
rdp[i] = Math.max(rdp[i], rdp[j] + 1);
}
}
}
int res = nums.length;
for (int i = 1; i < nums.length - 1; i++) {
res = Math.min(res, nums.length - ldp[i] - rdp[i] + 1);
}
return res;
}
}
时间复杂度 O ( l A 2 ) O(l_A^2) O(lA2),空间 O ( l A ) O(l_A) O(lA)。