【Lintcode】514. Paint Fence

该博客介绍了一个使用动态规划解决的编程问题:给定一定数量的柱子和可选颜色,要求柱子上不能有连续超过两个相同颜色,求所有可能的染色方法数。博主详细阐述了动态规划的思路,定义状态f[i]表示有i根柱子的染色方法数,并给出了递推公式f[i]=(k-1)(f[i-1]+f[i-2])。初始条件为f[1]=k, f[2]=k^2。代码实现中,博主以O(n)的时间复杂度求解了问题。
摘要由CSDN通过智能技术生成

题目地址:

https://www.lintcode.com/problem/paint-fence/description

给定 n n n个柱子,可以染 k k k种颜色,要求不能有连续超过两个相邻的柱子颜色一样,问有多少种染色方法。

思路是动态规划。设 f [ i ] f[i] f[i]是有 i i i根柱子的情况下有多少种染色方法。那么如果第 i − 1 i-1 i1根与第 i i i根柱子颜色相同,则有 ( k − 1 ) f [ i − 2 ] (k-1)f[i-2] (k1)f[i2]种方法(这是根据对称性,第 i − 2 i-2 i2根柱子只能涂 k − 1 k-1 k1种颜色,每种颜色有 f [ i − 1 ] / k f[i-1]/k f[i1]/k种方法,所以在第 i − 1 i-1 i1根柱子颜色确定的情况下,前 i − 2 i-2 i2根柱子有 f [ i − 1 ] / k × ( k − 1 ) f[i-1]/k\times(k-1) f[i1]/k×(k1)种方法,但第 i − 1 i-1 i1根柱子有 k k k种方案,所以一共 f [ i − 1 ] / k × ( k − 1 ) × k = ( k − 1 ) f [ i − 2 ] f[i-1]/k\times(k-1)\times k=(k-1)f[i-2] f[i1]/k×(k1)×k=(k1)f[i2]种方案);如果第 i − 1 i-1 i1根与第 i i i根柱子颜色不同,则有 ( k − 1 ) f [ i − 1 ] (k-1)f[i-1] (k1)f[i1]种方案,论证类似。所以有 f [ i ] = ( k − 1 ) ( f [ i − 1 ] + f [ i − 2 ] ) f[i]=(k-1)(f[i-1]+f[i-2]) f[i]=(k1)(f[i1]+f[i2])初始条件 f [ 1 ] = k , f [ 2 ] = k 2 f[1]=k,f[2]=k^2 f[1]=k,f[2]=k2,对于 f [ 0 ] f[0] f[0]则缺乏定义,可以定义为 1 1 1或者 0 0 0,我们要从 f [ 3 ] f[3] f[3]开始递推。代码如下:

public class Solution {
    /**
     * @param n: non-negative integer, n posts
     * @param k: non-negative integer, k colors
     * @return: an integer, the total number of ways
     */
    public int numWays(int n, int k) {
        // write your code here
        int[] dp = new int[Math.max(3, n + 1)];
        dp[0] = 1;
        dp[1] = k;
        dp[2] = k * k;
        
        // 从3开始递推
        for (int i = 3; i <= n; i++) {
            dp[i] = (k - 1) * (dp[i - 1] + dp[i - 2]);
        }
        
        return dp[n];
    }
}

时空复杂度 O ( n ) O(n) O(n)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值