【Leetcode】233. Number of Digit One

题目地址:

https://leetcode.com/problems/number-of-digit-one/description/

给定一个非负整数 n n n,求从 1 ∼ n 1\sim n 1n这些正整数中各个位总共有多少个 1 1 1

先将 n n n的每一位求出来然后从左到右排列。接下来考虑每一位为 1 1 1的小于等于 n n n的数有多少个。假设 n = a b c d e f g ‾ n=\overline{abcdefg} n=abcdefg,我们考虑 d d d这一位,有多少个数能取 1 1 1。如果 d = 0 d=0 d=0,那么其左边的方案是 0 ∼ a b c ‾ − 1 0\sim \overline{abc}-1 0abc1,右边的方案为 0 ∼ 999 0\sim 999 0999;如果 d = 1 d=1 d=1,那么除了上面那个方案之外,左边是可以取 a b c ‾ \overline{abc} abc的,而此时右边可以取 0 ∼ e f g ‾ 0\sim \overline{efg} 0efg;如果 d > 1 d>1 d>1,那么其左边的方案数是 0 ∼ a b c ‾ 0\sim \overline{abc} 0abc,右边的方案为 0 ∼ 999 0\sim 999 0999。对每一位求个总和即可。代码如下:

class Solution {
 public:
  int countDigitOne(int n) {
    vector<int> a;
    while (n) a.push_back(n % 10), n /= 10;
    reverse(a.begin(), a.end());
    int res = 0;
    for (int i = 0; i < a.size(); i++) {
      int d = a[i];
      int l = 0, r = 0, p = 1;
      for (int j = 0; j < i; j++) l = l * 10 + a[j];
      for (int j = i + 1; j < a.size(); j++) {
        r = r * 10 + a[j];
        p = p * 10;
      }

      if (!d)
        res += l * p;
      else if (d == 1)
        res += l * p + r + 1;
      else
        res += (l + 1) * p;
    }

    return res;
  }
};

时间复杂度 O ( log ⁡ 2 n ) O(\log^2n) O(log2n),空间 O ( log ⁡ n ) O(\log n) O(logn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值