【Leetcode】29. Divide Two Integers

题目地址:

https://leetcode.com/problems/divide-two-integers/

给定两个整数 x x x y y y,要求计算 x / y x/y x/y。不允许用乘除法和取余。如果得非整数则向 0 0 0取整。如果溢出了则返回 32 32 32位最大整数,即 2 31 − 1 2^{31}-1 2311

思路是倍增。我们直接考虑 x / y x/y x/y的各个二进制位是多少。显然,如果 x > 2 30 y x>2^{30}y x>230y,那么 x / y x/y x/y的左起第 30 30 30位的二进制位就是 1 1 1(这里是从 0 0 0开始计数的);接着再考虑 x − 2 30 y x-2^{30}y x230y,再看它的最高的二进制位是多少,以此类推。这样,只需要预处理一下所有比 x x x小于等于的 2 k y 2^ky 2ky,求出 x / y x/y x/y的所有非 0 0 0的二进制位再累加起来即可。代码如下:

class Solution {
 public:
  using ll = long long;
  int divide(int x, int y) {
    // 下面全用正的long来计算,先判断一下答案符号
    int sign = 1;
    if (x < 0 && y > 0 || x > 0 && y < 0) sign = -1;
    vector<ll> v;
    ll a = abs(x), b = abs(y);
    // 预处理一下小于等于|x|的2^k * |y|,先去掉绝对值
    for (ll i = b; i <= a; i += i) v.push_back(i);
    ll res = 0;
    for (int i = v.size() - 1; i >= 0; i--)
      if (a >= v[i]) a -= v[i], res |= 1ll << i;
    res *= sign;
    if (res < INT_MIN || res > INT_MAX) return INT_MAX;
    return res;
  }
};

时空复杂度 O ( log ⁡ ∣ x y ∣ ) O(\log |\frac{x}{y}|) O(logyx)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值