题目地址:
https://leetcode.com/problems/divide-two-integers/
给定两个整数 x x x和 y y y,要求计算 x / y x/y x/y。不允许用乘除法和取余。如果得非整数则向 0 0 0取整。如果溢出了则返回 32 32 32位最大整数,即 2 31 − 1 2^{31}-1 231−1。
思路是倍增。我们直接考虑 x / y x/y x/y的各个二进制位是多少。显然,如果 x > 2 30 y x>2^{30}y x>230y,那么 x / y x/y x/y的左起第 30 30 30位的二进制位就是 1 1 1(这里是从 0 0 0开始计数的);接着再考虑 x − 2 30 y x-2^{30}y x−230y,再看它的最高的二进制位是多少,以此类推。这样,只需要预处理一下所有比 x x x小于等于的 2 k y 2^ky 2ky,求出 x / y x/y x/y的所有非 0 0 0的二进制位再累加起来即可。代码如下:
class Solution {
public:
using ll = long long;
int divide(int x, int y) {
// 下面全用正的long来计算,先判断一下答案符号
int sign = 1;
if (x < 0 && y > 0 || x > 0 && y < 0) sign = -1;
vector<ll> v;
ll a = abs(x), b = abs(y);
// 预处理一下小于等于|x|的2^k * |y|,先去掉绝对值
for (ll i = b; i <= a; i += i) v.push_back(i);
ll res = 0;
for (int i = v.size() - 1; i >= 0; i--)
if (a >= v[i]) a -= v[i], res |= 1ll << i;
res *= sign;
if (res < INT_MIN || res > INT_MAX) return INT_MAX;
return res;
}
};
时空复杂度 O ( log ∣ x y ∣ ) O(\log |\frac{x}{y}|) O(log∣yx∣)。