【ACWing】854. Floyd求最短路

这篇博客介绍了如何利用Floyd算法解决含有负权重但无负权回路的有向图中的多源最短路问题。通过动态规划的方法,博主详细解释了算法的原理和实现过程,并给出了C++代码示例。在预处理阶段,算法的时间复杂度为O(n^3),每次查询的时间复杂度为O(1),空间复杂度为O(n^2)。
摘要由CSDN通过智能技术生成

题目地址:

https://www.acwing.com/problem/content/856/

给定一个 n n n个点 m m m条边的有向图,图中可能存在重边和自环,边权可能为负数。再给定 k k k个询问,每个询问包含两个整数 x x x y y y,表示查询从点 x x x到点 y y y的最短距离,如果路径不存在,则输出“impossible”。数据保证图中不存在负权回路。

输入格式:
第一行包含三个整数 n n n m m m k k k。接下来 m m m行,每行包含三个整数 x x x y y y z z z,表示存在一条从点 x x x到点 y y y的有向边,边长为 z z z。接下来 k k k行,每行包含两个整数 x x x y y y,表示询问点 x x x到点 y y y的最短距离。

输出格式:
k k k行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出impossible

数据范围:
1 ≤ n ≤ 200 1\le n\le 200 1n200
1 ≤ k ≤ n 2 1\le k\le n^2 1kn2
1 ≤ m ≤ 20000 1\le m\le 20000 1m20000
0 ≤ ∣ e ∣ ≤ 10000 0\le |e|\le 10000 0e10000
e e e是边长

不存在负权回路,那么每个点对都一定存在最短路。多源最短路用Floyd算法。这个算法其实是用到了动态规划思想。设 f [ k ] [ i ] [ j ] f[k][i][j] f[k][i][j]是从 i i i j j j只经过 1 ∼ k 1\sim k 1k这些顶点的情况下,所得到的最短路长度(当然也包含从 i i i直接走一步到 j j j的情况)。那么有: f [ k ] [ i ] [ j ] = min ⁡ { f [ k − 1 ] [ i ] [ j ] , f [ k − 1 ] [ i ] [ k ] + f [ k − 1 ] [ k ] [ j ] } f[k][i][j]=\min\{f[k-1][i][j],f[k-1][i][k]+f[k-1][k][j]\} f[k][i][j]=min{f[k1][i][j],f[k1][i][k]+f[k1][k][j]}也就是说,从 i i i j j j的,且只经过 1 ∼ k 1\sim k 1k的点的最短路分为两类,如果其不经过点 k k k,那么就是 f [ k − 1 ] [ i ] [ j ] f[k-1][i][j] f[k1][i][j],如果经过 k k k,由于不存在负环,所以只经过 k k k一次,所以就是 f [ k − 1 ] [ i ] [ k ] + f [ k − 1 ] [ k ] [ j ] f[k-1][i][k]+f[k-1][k][j] f[k1][i][k]+f[k1][k][j],两者取最小者即可。需要注意, f [ 0 ] f[0] f[0]在初始化的时候要初始化为两个点之间的最短边的距离,这样相当于还需要递推一下 k = 1 k=1 k=1的情形。代码如下:

#include <iostream>
using namespace std;

const int N = 210, INF = 1e9;
int n, m, Q;
int d[N][N];

void floyd() {
  for (int k = 1; k <= n; k++)
    for (int i = 1; i <= n; i++)
      for (int j = 1; j <= n; j++) 
        d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

int main() {
  cin >> n >> m >> Q;

  for (int i = 1; i <= n; i++)
    for (int j = 1; j <= n; j++)
      if (i == j) d[i][j] = 0;
      else d[i][j] = INF;

  while (m--) {
    int a, b, w;
    cin >> a >> b >> w;
    d[a][b] = min(d[a][b], w);
  }

  floyd();

  while (Q--) {
    int a, b;
    cin >> a >> b;
    d[a][b] > INF / 2 ? puts("impossible") : printf("%d", d[a][b]);
  }
}

预处理时间复杂度 O ( n 3 ) O(n^3) O(n3),每次询问时间复杂度 O ( 1 ) O(1) O(1),空间 O ( n 2 ) O(n^2) O(n2)

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值