题目地址:
https://www.acwing.com/problem/content/856/
给定一个 n n n个点 m m m条边的有向图,图中可能存在重边和自环,边权可能为负数。再给定 k k k个询问,每个询问包含两个整数 x x x和 y y y,表示查询从点 x x x到点 y y y的最短距离,如果路径不存在,则输出“impossible”。数据保证图中不存在负权回路。
输入格式:
第一行包含三个整数
n
n
n,
m
m
m,
k
k
k。接下来
m
m
m行,每行包含三个整数
x
x
x,
y
y
y,
z
z
z,表示存在一条从点
x
x
x到点
y
y
y的有向边,边长为
z
z
z。接下来
k
k
k行,每行包含两个整数
x
x
x,
y
y
y,表示询问点
x
x
x到点
y
y
y的最短距离。
输出格式:
共
k
k
k行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出impossible
。
数据范围:
1
≤
n
≤
200
1\le n\le 200
1≤n≤200
1
≤
k
≤
n
2
1\le k\le n^2
1≤k≤n2
1
≤
m
≤
20000
1\le m\le 20000
1≤m≤20000
0
≤
∣
e
∣
≤
10000
0\le |e|\le 10000
0≤∣e∣≤10000
e
e
e是边长
不存在负权回路,那么每个点对都一定存在最短路。多源最短路用Floyd算法。这个算法其实是用到了动态规划思想。设 f [ k ] [ i ] [ j ] f[k][i][j] f[k][i][j]是从 i i i到 j j j只经过 1 ∼ k 1\sim k 1∼k这些顶点的情况下,所得到的最短路长度(当然也包含从 i i i直接走一步到 j j j的情况)。那么有: f [ k ] [ i ] [ j ] = min { f [ k − 1 ] [ i ] [ j ] , f [ k − 1 ] [ i ] [ k ] + f [ k − 1 ] [ k ] [ j ] } f[k][i][j]=\min\{f[k-1][i][j],f[k-1][i][k]+f[k-1][k][j]\} f[k][i][j]=min{f[k−1][i][j],f[k−1][i][k]+f[k−1][k][j]}也就是说,从 i i i到 j j j的,且只经过 1 ∼ k 1\sim k 1∼k的点的最短路分为两类,如果其不经过点 k k k,那么就是 f [ k − 1 ] [ i ] [ j ] f[k-1][i][j] f[k−1][i][j],如果经过 k k k,由于不存在负环,所以只经过 k k k一次,所以就是 f [ k − 1 ] [ i ] [ k ] + f [ k − 1 ] [ k ] [ j ] f[k-1][i][k]+f[k-1][k][j] f[k−1][i][k]+f[k−1][k][j],两者取最小者即可。需要注意, f [ 0 ] f[0] f[0]在初始化的时候要初始化为两个点之间的最短边的距离,这样相当于还需要递推一下 k = 1 k=1 k=1的情形。代码如下:
#include <iostream>
using namespace std;
const int N = 210, INF = 1e9;
int n, m, Q;
int d[N][N];
void floyd() {
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
int main() {
cin >> n >> m >> Q;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (i == j) d[i][j] = 0;
else d[i][j] = INF;
while (m--) {
int a, b, w;
cin >> a >> b >> w;
d[a][b] = min(d[a][b], w);
}
floyd();
while (Q--) {
int a, b;
cin >> a >> b;
d[a][b] > INF / 2 ? puts("impossible") : printf("%d", d[a][b]);
}
}
预处理时间复杂度 O ( n 3 ) O(n^3) O(n3),每次询问时间复杂度 O ( 1 ) O(1) O(1),空间 O ( n 2 ) O(n^2) O(n2)。